
Characterizing the ‘Security Vulnerability Likelihood’ of Software Functions

Dan DaCosta, Christopher Dahn, Spiros Mancoridis, Vassilis Prevelakis
Department of Computer Science

Drexel University, Philadelphia, PA, USA�
Daniel.William.DaCosta, Christopher.Stephen.Dahn,
Spiros.Mancoridis, Vassilis.Prevelakis � @drexel.edu

Abstract

Software maintainers and auditors would benefit from a
tool to help them focus their attention on functions that are
likely to be the source of security vulnerabilities. However,
the existence of such a tool is predicated on the ability to
characterize a function’s ‘security vulnerability likelihood.’

Our hypothesis is that functions near a source of input
are most likely to contain a security vulnerability. These
functions should be a small percentage of the total num-
ber of functions in the system. To validate this hypothesis,
we performed an experiment involving thirty one vulnera-
bilities in open source software. This paper describes the
experiment, its outcome, and the tools used to conduct it.
It also describes the FLF Finder, which is a tool that was
developed using knowledge gathered from the outcome of
the experiment. This tool automates the detection of high
risk functions. To demonstrate the effectiveness of the FLF
Finder, three open source applications with known vulnera-
bilities were tested. In addition to this test, a case study was
performed on the privilege separation code in the OpenSSH
server daemon.

1. Introduction

A software vulnerability is a fault in the specifica-
tion, implementation, or configuration of a software system
whose execution can violate an explicit or implicit security
policy [15]. Software maintainers typically focus on the
functionality of software rather than on its security posture.
Hence, vulnerabilities often escape their attention until the
software is exploited by specially written malicious code.

A large percentage of software is developed using un-
safe programming languages (e.g., C and C++) in the name
of cost effectiveness, programmer familiarity, and perfor-
mance. Being unable to influence how others develop new
software, we must find ways to improve the maintenance
process to secure software against possible attacks.

Code audits are one aspect of the maintenance process
that can focus on security vulnerabilities, and have been
tried, with some success, on systems such as the OpenBSD
operating system [23]. Unfortunately, audits are expensive
and reoccurring. Each audit requires many man hours, and
each software revision requires re-examination to verify that
new faults have not been introduced.

The quantity of code in many systems makes large-scale
auditing infeasible. In the case of OpenBSD, the auditing
effort only focuses on software that is enabled in the de-
fault installation. This decision has resulted in overlooked
vulnerabilities in other often used components of the distri-
bution, such as telnetd.

Beizer states that good source code will have one to three
faults for every one hundred lines of code [4]. However, it
is not known which of those faults is a security vulnerabil-
ity. Auditors would benefit from a tool that can reduce the
amount of code that needs to be studied; enabling them to
focus their attention on areas of likely vulnerability.

Our hypothesis is that a small percentage of functions
near a source of input (e.g., file I/O) are the most likely to
contain a security vulnerability. Exactly what we mean by
‘near’ is described in Section 3.3. We refer to these func-
tions as FLFs (Front Line Functions), and the percentage
of functions likely to contain a security vulnerability as the
FLF density. We validate our hypothesis with an experi-
ment that involves thirty one vulnerabilities in open source
software using two tools that were developed for this pur-
pose. The results of this experiment are summarized in Ta-
ble 1.

Based on the validation of the hypothesis, the FLF Finder
tool was developed to identify areas of high vulnerabil-
ity likelihood automatically. The effectiveness of the FLF
Finder is demonstrated in two ways. First, it is applied to
three open source software systems, micq, elm, and dhcpd,
with known (documented) vulnerabilities. Second, the FLF
Finder is applied to the OpenSSH daemon software, which
does not have known vulnerabilities but has recently un-
dergone a widely-publicized restructuring, called privilege

separation, aimed at minimizing the amount of code that
runs with elevated privileges. By minimizing the amount of
privileged code, it reduced the risk of a security vulnerabil-
ity occurring within that code. Although the restructuring
was done manually, our case study shows that the results
produced by the FLF Finder are consistent with the design
decisions made by the security auditors.

The remainder of this paper is structured as follows: Sec-
tion 2 outlines related research, Section 3 presents the ex-
periment, Section 4 describes how the experiment’s out-
come was used to develop the FLF Finder, Section 5 details
the OpenSSH case study, and Section 6 outlines the limita-
tions of this work and our future plans. The paper concludes
in Section 7.

2. Related Research

This work is related to two major areas of research. The
first is software security, specifically as it applies to security
vulnerabilities in code. The second is the use of source code
analysis for software maintenance.

2.1. Software Security

2.1.1. Common Security Vulnerabilities

There are many classifications of software security vulner-
abilities [2, 14, 5]. This work considers only the categories
of vulnerabilities that involve obtaining external input data
that causes a security exploit.

Figure 1. Buffer Overflow

Buffer overflows may occur when a fixed size mem-
ory allocation is used to store a variable-size data entry.
There are conflicts when the variable size data entry over-
runs the bounds of the fixed-size memory, as show in Fig-
ure 1. These overflows are typically exploited by entering a
string which is larger than the buffer assigned to hold it. If
the return address (RA) is part of the overwritten run-time
stack, the user may execute arbitrary code [22].

Format string vulnerabilities target specific types of C
and C++ function calls such as printf and sprintf.
This family of functions accepts an input string that speci-
fies the format of the output along with an arbitrary number
of arguments that correspond to that string, called the vari-
able arguments list. The function pushes the arguments onto
the run-time stack and then reads the format string, popping
the arguments back off of the stack. If the programmer al-
lows the user to specify the format string at run-time, the
user could request more data to be popped off the stack than
the programmer had originally pushed. This unpredictable
behavior could lead to a denial of service attack, or a buffer
overflow [20].

Denial of service attacks involve giving the application
an unexpected input that causes it to disallow service to any
other user. For example, the input may cause the application
to enter an infinite loop or to crash. Many denial of service
attacks target the network infrastructure [17], but this work
only pertains to attacks on applications.

2.1.2. Technologies to Detect & Prevent Vulnerabilities

Our effort is not the first to address the problems of vul-
nerabilities in software. Some of the existing security tools,
such as Splint and cqual, perform static analysis to find code
that is likely to be vulnerable. Unlike our tools, however,
they require programmers to annotate their source code with
constraints. Not all of the existing source code analysis
tools require code annotations, however. Flawfinder, RATS,
ITS4, and Mops are all tools that analyze source code and
report possible weaknesses.

Other tools, such as StackGuard and FormatGuard, at-
tempt to detect and handle vulnerabilities at run-time. Fi-
nally, some vulnerabilities can be prevented in hardware
and operating systems by using non-executable memory
pages.

Flawfinder [28], RATS [26], and ITS4 [8] are all tools
that examine source code and report possible weaknesses.
An overview of these tools, along with a comparison of their
capabilities, can be found in an Linux Journal article [19].
In general, these tools direct the attention of code auditors
to C/C++ functions that are known to be associated with se-
curity problems (i.e., buffer overflows, format string prob-
lems, temporary file race conditions) and produce a list of
vulnerable code statements.

The Splint utility [16] allows source code annotations to
be inserted to determine if a buffer overflow is possible for
certain portions of the code. The tool assumes that the de-
veloper will add all of the necessary annotations correctly.

Cqual [27] is a tool that detects format string vulnerabil-
ities through source code analysis. It allows programmers
to use two new data type modifiers, tainted (untrusted
data) and untainted (trusted data), that can be applied to

2

any data type in the source code. The tool uses a modified
compiler on the annotated source code and informs the pro-
grammer when mismatches occur between tainted and
untainted types.

Our tool should be used in conjunction with these five
tools. Specifically, the FLF Finder reduces the number of
functions the auditor should look at. The auditor may then
apply any of the other tools to find specific lines of code that
may be vulnerable.

Model checking has been used with some success to
detect possible vulnerabilities in software. For example,
MOPS [6], uses state machines to detect patterns of func-
tion call sequences that commonly result in security vulner-
abilities.

StackGuard [11] has been reasonably successful at re-
porting buffer overflows immediately after they happen.
Specifically, StackGuard inserts code into the application
at compile time and a ‘canary’ value just before the return
address on the run-time stack. When the function returns,
the added code checks if this canary value is still in place.
If the canary value is no longer present, then a buffer over-
flow must have occurred that overwrote the value. When
this happens, the application terminates with a notification.

FormatGuard [10] is used to detect format string vulner-
abilities. It provides protection by using a proxy API com-
posed of C macros that intercept predetermined vulnerable
functions. These macros count the number of operands in
the format string and the number of arguments passed to the
function via the variable arguments list. If these numbers do
not match, FormatGuard flags the program as compromised
and does not invoke the vulnerable function.

An effective way to avoid the security problems of an
exploited vulnerability is to disallow the execution of the
run-time stack altogether. By allowing memory pages to
be set as non-executable, it prevents executable code that
may have been placed on the run-time stack during a buffer
overflow from being executed. This measure can still be
defeated in some cases and also dictates that programs must
be reentrant.

2.2. Source Code Analysis

Code analysis tools parse source and produce a data
repository of source code facts. Maintainers can then for-
mulate queries against the data repository when trying to
understand a program.

A C and C++ code analyzer has been developed at AT&T
called Acacia [7, 3]. Acacia uses the Edison Design Group’s
(EDG) compiler to parse the source code, but only accepts
code written in ISO C/C++ or K&R C. This is a limitation
for our research since we are studying open source systems,
which often contain third-party GNU extensions that do not
conform to ISO or K&R standards.

A similar tool is the GNU C Compiler (GCC) XML Code
Introspector [12]. Introspector converts the GCC abstract
syntax tree (AST) into either XML or a Postgres relational
database.

Other examples of code analyzers are Reprise [25] for
C++, Chave for Java [?] and Cobol/SRE [21] for COBOL.

Some of the mentioned tools display their output as sim-
ple text or as a graph using visualization tools from the
Graphviz [3] package.

3. FLF Experiment

This section describes the experiment to validate the FLF
hypothesis. The experiment involves a suite of thirty one
vulnerabilities in open source software written in C that
have known (documented) security vulnerabilities. The first
column of Table 1 shows the name of each open source sys-
tem. If a system contains more than one vulnerability, the
name of the system is followed by a ‘-’ and the vulnerability
number (e.g., zgv-1, zgv-2).

3.1 Inputs and Targets

For the purpose of the experiment, we refer to the func-
tions that accept input as Inputs and the functions with
known vulnerabilities as Targets.

An example of an Input is a user defined function that
contains a call to read in unistd.h. The function read
stores data from a potentially untrusted source into a buffer.
Our analysis revealed that the most common sources of in-
put data are direct user input, indirect user input via com-
mand line arguments, and input from environment vari-
ables. The FLF Finder supplies a list of common Inputs
such as read. However, any function could be a potential
Input, so the user may specify what other functions in the
software system should be considered an input.

A Target is any function that contains a known vulner-
ability. These functions typically use a global buffer or a
variable parameter that contains data from an Input. For ex-
ample, a Target could be a function that calls printf using
a user supplied buffer as the first argument.

All of the open source systems used in the experiment
have at least one known vulnerability and one patch file for
repairing the vulnerability. The patch files are created by
maintainers using the Unix diff tool. The experiment uses
patch files to identify the Targets in each system automati-
cally.

Figure 2 shows a typical patch file that repairs a security
vulnerability. The subtractive lines (i.e., lines that begin
with a ‘-’) lines in the patch file specify the original source
code that must be removed to repair the vulnerability. We
consider the functions that contain the subtractive lines to
be Targets.

3

--- channels.c Thu Mar 7 15:01:32 2002
+++ channels.c Thu Mar 7 15:11:55 2002
@@ -145,7 +145,7 @@
{

Channel *c;

- if (id < 0 || id > channels_alloc) {
+ if (id < 0 || id >= channels_alloc) {

log("channel_lookup: %d: bad id",
id);

return NULL;
}

Figure 2. An OpenSSH patch file

3.2. Tools

The experiment uses two tools we developed. GAST-MP
(GNU Abstract Syntax Tree Manipulation Program) takes
pre-processed C source code and generates a database of
code facts for each system in the experiment. SGA (System
Graph Analyzer) discovers Targets in the source code and
creates function call graphs that are necessary.

3.2.1. GAST-MP

The GNU C Compiler (GCC) version 3.21 is able to output
the AST (abstract syntax tree) that it produces into an ASCII
text file when given the -fdump-tree-original
flag. GAST-MP parses this file and produces a relational
database of code facts.

3.2.2. SGA

The SGA tool has a dual purpose. It functions as a vulnera-
bility patch file analyzer to identify Target functions and as
a function call graph generator that is used to trace how po-
tentially dangerous data could flow from Inputs to Targets.

For each vulnerability patch file, SGA determines the
line number of each subtractive line in the corresponding
source code. It then uses the GAST-MP database to find the
function that contains that line of code. Once the function
is determined, it is marked as a Target.

3.3. Function Invocation Path Model

Recall that the FLF hypothesis states that a small per-
centage of functions, specifically those near a source of in-
put, are most likely to contain a security vulnerability. We
will show that thirty one vulnerabilities in open source soft-
ware occur within close proximity to an Input. The proxim-

ity is measured as the number of function invocations that
occur between the Input and Target.

The FLF density � for each Input and Target pair is the
ratio ����� , where � is the number of functions on the longest
achievable call path between the Input and Target, and � is
the total number of functions in the system.

Assuming that asynchronous code is not taken into ac-
count (see Section 6), there are three possilble invocation
paths from an Input to a Target that will contain all data
flow paths. Given an Input node � and a Target node 	 , one
can have a invocation path ��
�	 . Given the same pair of
nodes, one can also have a invocation path 	
�� . Finally,
given a graph ������������ and a node ����� such that �
is neither an Input nor a Target , there can exist a data flow
such that ��
 � and ��
 	 . Between these three case,
under our assumption, all possible data flow paths must be
contained.

We know that the call graph contains all of the possi-
ble data flow paths between Input and Target. Hence, all
data flow paths between Input and Target must not be con-
tained in any invocation path longer than the longest invo-
cation path between Input and Target on the call graph. As
shown in Section 3.4, we always choose the longest invoca-
tion path. By choosing the longest invocation path, we are
make conservative estimate of the length of the data flow
path that is actually executed.

3.4. FLF Hypothesis Validation

The validation consists of four stages. The first stage is
to search for software systems with known vulnerabilities
and patch files for those vulnerabilities. In general, it is
difficult to find patch files that only pertain to security vul-
nerabilities since maintainers make one general patch file
that contains fixes for both regular faults and security vul-
nerabilities. Fortunately, some Linux distributions provide
software in the form of Source Red Hat Package Manager
(SRPM) files. SRPMs contain unaltered source code and
a set of patches that address specific faults in the source.
SRPM packages comprise much of the test suite.

The second stage is to pre-process each software system
in the test suite with GCC to resolve macros and compile
time dependencies. GAST-MP is then used to generate a
database of code facts for each system.

Finally, SGA is used to calculate the FLF density of each
system. The process to calculate FLF density is as follows:

1. Create the entire call graph � for the system

2. Transform � into a directed acyclic graph (DAG) with
a root node. Call this new graph � �

3. Label Input nodes in � �

4

4. Use the subtractive lines in the vulnerability patch files
and code facts from the GAST-MP database to deter-
mine and label Target nodes in � �

5. Discover the set of common ancestors, ! , for each
Input-Target pair in � �

6. Calculate � for each Input-Target pair, which is the
number of functions along the longest path from Input
to Target through a member of !

7. Calculate the total number of functions, � , in �"�
8. For each Input-Target pair, compute the FLF density,
�$#%�&�'�

9. Select the largest � as the FLF density for that system

It is important to transform � into a rooted DAG since
the common ancestors algorithm [13] requires a DAG to
perform correctly. By choosing the largest result, we obtain
a conservative estimate of the number of functions that had
access to data from the Input. A conservative estimate will
reduce the likelihood of false negatives (functions that have
access to data from an Input, but are not chosen for audit)
created by the FLF finder.

Our experiment, computed the FLF density for each sys-
tem. The sample mean FLF density (()) across all systems is
2.87% with a standard deviation (*) of 1.83%. This means
that, on average, 2.87% of the functions in each system
were involved in the security vulnerability documented by
the patch files. We can say, with 95% confidence, that the
true mean FLF density (+) is within the interval of 2.23% to
3.51%.

4. FLF Finder

The FLF Finder discovers those functions in the code
that are at higher risk of vulnerability. The tool is not in-
tended to find faults, only to show which functions are at
risk. The FLF Finder requires two pieces of information
to be provided by the user. The first is the source code to
be analyzed, and the second is a list of Inputs (besides those
provided by the FLF Finder). Table 2 lists the default Inputs
that the FLF Finder looks for. Each column lists functions
from a specific system library.

The process the FLF Finder uses is as follows:

1. Create the entire call graph � for the system

2. Label Input nodes in �
3. Compute the total number of functions, � , in �
4. Given the FLF density result of 2.87%, solve for �,#
�-�

5. Label the nodes in � as follows:

. 	0/1�3254��3	768#%� ;9 �:� ;=<>4?284@�3	765#BA ;
while Input has unlabeled ancestor C9 �:� ;=<>4?284@�3	76ED . 	0/1�3254��F	76 do

traverse incoming edge;
label node;
increment

9 �:� ;=<-4�254��F	76 ;GIH 	0� ;=<-4�254��F	765# 9 �:� ;=<>4?284@�3	76 ;
while node has unlabeled predecessor CGIH 	0� ;=<-4�254��F	76ED . 	0/1�J254��F	76 do

traverse outgoing edge;
label node;
increment

GIH 	0��;K<>4�254��F	76 ;

end
end
print labeled nodes;

This process is identical to that used in Section 3.4, ex-
cept that it might produce false positives. The false posi-
tives are introduced because Targets are not known ahead
of time. In the experiment, the resulting FLF density was
based on one path through one common ancestor. Since the
Targets are not known ahead of time when the FLF finder
is used, every function invocation path of length � through
every common ancestor is suspect.

To test the effectiveness of the FLF Finder, we applied it
to three open source software systems with known vulner-
abilities that were not used in the experiment, micq, elm,
and dhcpd. These systems were found in the same manner
as discussed in Section 3.4. The results of these tests are
shown in Table 3.

The table show three pieces of information. The first,
Function Coverage, is the percentage of the functions in the
system that were labeled as FLFs. This number is much
larger than the experimental amount (i.e., 2.87%) due to the
introduction of false positives described previously. Next,
the table lists how many known vulnerabilities exist in the
test system, and how many of the functions that contained
vulnerabilities were identified using the FLF Finder. Only
dhcpd failed to identify all of its known vulnerabilities. It
failed to find one vulnerability because there is no known
path to the function in dhcpd which contains the vulnera-
bility.

One of our objectives was to supply the maintainer with
a tool that eases the process of performing a security audit.
The FLF Finder accomplishes this by eliminating most of
the system’s functions from consideration.

The next section describes how the FLF Finder was ap-
plied to the OpenSSH secure shell daemon software.

5

5. OpenSSH Case Study

This case study test the validity of our tools, concepts,
and observations by using them against a software system
and then verifying the results against the decisions made by
the developers who audited the code for security. It is our
opinion that if the FLF Finder notes those functions suspect
that the developers also noted as suspect, then our FLF hy-
pothesis is one which can have an impact on the software
security community.

5.1. OpenSSH

OpenSSH is a freely available suite of network connec-
tivity tools that a growing portion of the Internet is rely-
ing on. Telnet, rlogin, ftp, and other such programs
transmit unencrypted password information during authen-
tication. OpenSSH encrypts all traffic (including pass-
words) to eliminate eavesdropping, connection hijacking,
and other network-level attacks.

OpenSSH includes sshd, a secure alternative to
telnetd and sftp, a secure alternative to ftp. Privilege
separation was originally an optional part of the OpenSSH
architecture. However, the OpenSSH team made it manda-
tory as of version 3.2.3 [1].

5.2. Privilege Separation

The principle behind privilege separation is to minimize
the amount of code that runs with elevated privileges with-
out limiting the functionality of the program. The result
is that the separated code(which runs with elevated privi-
leges) can now be audited thoroughly due to its small size,
and therefore should be more secure. After separation, the
number of lines of sshd code that needed to be audited
shrunk from 27,000 to 2,500.

The remaining lines of unprivileged code execute in what
is known as a jail. The jail is a specially constructed direc-
tory which works with a user that only has access to this
directory and has no other privileges. Any attempts to ex-
ploit code within this jail should result in either a denial of
service to the attacker or arbitrary code execution as the re-
stricted user in an environment isolated from the rest of the
operating system [24].

5.3. Case Study

The goal of the following case study is to demonstrate
that the FLF concept and its associated tools can be used to
increase the efficiency of a source code auditor. This will
be done by comparing the FLF Finder results of OpenSSH
3.1(3.1) against OpenSSH 3.2.3(3.2.3). 3.1 was the last

version that did not run with mandatory privilege separa-
tion, and 3.2.3 was the most recent version as of the time
the case study was performed. The criteria for a success-
ful study will be the agreement of the set of FLF’s with the
changes made in 3.2.3. More explicitly, we wish to show
that those FLF’s noted by the FLF Finder contain those
functions modified by the experience developers in 3.2.3

The changes made in 3.2.3 add 78 functions which spec-
ify a message passing API. These 78 functions are used pri-
marily by legacy functions to pass data between the priv-
ileged and unprivileged segments of the system. It is our
belief that the developers were implicitly enforcing FLF
bounds on 3.1 by choosing where to place the new 78 func-
tions. Therefore, we will run our FLF finder on 3.1 to study
how many of these legacy functions the FLF finder also
notes as high risk functions.

Those functions which we are interested in finding are
located in the following manner, we let L�MONQP RSP N be the set of
all functions in 3.2.3 which use the message passing API
and let MTNSP U be the set of all functions in 3.1. Then let
MWVYX'Z\[^]1_0[0`�Z_a# L�MWNQP RSP N bcMTNQP U such that MTVYX'Z\[^]1_0[0`�Z_ now
contains only those functions in 3.1 which where changed
to use the message passing API in 3.2.3. We now apply
the FLF finder to 3.1 to generate MdLeM , the set of FLFs
in M NSP U . Finally we let M _^f'`^`^[0_0_ # MdLeMgbhM VYX'Z\[^]1_0[0`�Z_ ,
M _0f�`^`^[7_0_ is the set of all functions which were found by
the FLF finder and also were used in 3.2.3 to call message
passing functions. Therefore we can determine our correct-
ness by i M _0f�`^`^[7_0_ i �ji M VYX'Z\[^]1_0[0`�Z_ i . When this procedure was
applied we were k"lnmj�0oqp-�>o�rK� successful at locating those
functions which the openssh developers also implicitly de-
fined as FLF’s. Of the total 1029 functions openssh 3.1 the
FLF finder identified 374 or k"sKp as potential targets.

This case study presents an example of how the FLF con-
cepts and tools can be used to aid code auditors in finding
high risk areas of code in an efficient manner. We say this,
because we were able to remove and estimated oqtj�@p=pnl lines
of code with very little effort while maintaining a high de-
gree of accuracy. As our tools mature and our experimental
set becomes larger we can assume that our ability to trim
those unimportant segments of a system(in terms of secu-
rity) will only improve. Preliminary versions of this process
which use data flow as a method of further reducing extra-
neous function paths have shown even more dramatic re-
sults maximizing our success rate while minimizing lines of
code. This implies that code auditors will be able to spend
thier time on those functions that are in the most need of
attention.

6. Limitations & Future Work

This section describes limitations associated with our
current work as well as proposed solutions and future im-

6

provements.

6.1 Function Pointers

Function pointers cause call-paths to be disconnected be-
cause function pointers are resolved at run-time. In some
cases, it is possible to discover the set of functions that a
function pointer can resolve to, and include that branching
in the call-graph.

6.2 Asynchronous Executable Code

Static analysis of asynchronously executable code, such
as threads and signal handlers, is non-deterministic. Call
graphs that contain these constructs appear disconnected be-
cause it is impossible to guarantee that an association will
be found to connect the data flow paths and thereby the in-
vocation paths.

6.3 Future Improvements

The first improvement is to support C++ in addition to C.
This will enable us to use a much larger experimental test
suite.

The integration of the tools described in this paper into
our reverse engineering portal, called REportal [18], would
widen the impact of the work significantly. The web por-
tal enables developers to upload source code and perform
specialized analysis online using a web browser.

Currently, all macros are lost during the pre-processing
phase of the source code analysis. Modification to the pre-
processor will allow macro associations to be included in
the database and, hence, used in our analysis.

The querying mechanism supported by SGA is primitive.
In the future, we would like to enhance SGA with a more
expressive query language that would support, among other
things, transitive closure.

7. Conclusions

Our hypothesis states that a relatively small percentage
of functions near a source of input are the most likely to
contain a security vulnerability. Described in this paper is
an experiment to validate this hypothesis. The results of this
experiment, shown in Table 1, support our hypothesis.

In Section 3 we computed the FLF density of each sys-
tem in the test suite. Recall that the FLF density � for each
Input and Target pair is the ratio �&�'� . � is the number of
functions on the longest achievable call path between the
Input and Target, and � is the total number of functions
in the system. We found that the sample mean FLF den-
sity was2.87% with a standard deviation of1.83%. From

this we can generate a 95% confidence interval for the true
mean FLF density from 2.23% to3.51%.

These results were tested against several open source
software systems not included in the experiment, as well as
the OpenSSH server daemon. The case study showed that
the design decisions made by the OpenSSH team concur
with the results our FLF Finder produced.

By using the FLF Finder, code auditors can focus their
attention on the most vulnerable functions in the system.
This would allow them to spend more of their time search-
ing for less obvious security flaws in systems, leading to
more secure applications.

Acknowledgments

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Labo-
ratory, Air Force Materiel Command, USAF, under agree-
ment number F30602-01-2-0534. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation
thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Labora-
tory, or the U.S. Government.

Dr. Angelos Keromytis was especially helpful in the val-
idation of the FLF Finder tool against the OpenSSH system.

Special thanks to Jeffrey White for helping us set up the
FLF experiment.

References

[1] OpenSSH website. http://www.openssh.org.
[2] T. Aslam. A Taxonomy of Security Faults in the Unix

Operating System. Master’s thesis, Purdue University,
1995.

[3] AT&T Labs - Research Tools
http://www.research.att.com/sw/tools.

[4] B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 1990.

[5] M. Bishop. A Taxonomy of UNIX System and Network
Vulnerabilities. Technical report, Department of Computer
Science, University of California at Davis, May 1995.

[6] H. Chen and D. Wagner. Mops: An infrastructure for
examining security properties of software.
http://www.cs.berkeley.edu/ hchen/publication/ccs02.pdf.

[7] Y. Chen, E. R. Gansner, and E. Koutsofios. A C++ Data
Model Supporting Reachability Analysis and Dead Code
Detection. In Proceedings of the European Conference on
Software Engineering/Foundations of Software
Engineering, 1997.

7

[8] Cigital. ITS4 http://www.cigital.com/its4/.
[9] CoSAK Case Studies Page,

http://serg.mcs.drexel.edu/cosak/case study/.
[10] C. Cowan, M. Barringer, S. Beattie, and

G. Kroah-Hartman. FormatGuard: Automatic Protection
From printf Format String Vulnerabilities. In Proceedings
of the 10th USENIX Security Symposium, August 2001.

[11] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Automatic Detection and
Prevention of Buffer-Overflow Attacks. In Proceedings of
the 7th USENIX Security Symposium, January 1998.

[12] GCC XML Code Introspector.
http://introspector.sourceforge.net/.

[13] D. Harel and R. E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM Journal on Computing,
13(2):338–355, May 1984.

[14] I. Krsul. Computer Vulnerability Analysis Thesis Proposal.
PhD thesis, Purdue University, 1997.

[15] I. Krsul. Software Vulnerability Analysis. PhD thesis,
Purdue University, 1998.

[16] D. Larochelle and D. Evans. Statically Detecting Likely
Buffer Overflow Vulnerabilites. In Proceedings of the 10th
USENIX Security Symposium, August 2001.

[17] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxson, and S. Shenker. Controlling High-Bandwidth
Aggregates in the Network (Extended Version). Technical
report, ACIRI and AT&T Labs Research, July 2001.

[18] S. Mancoridis, T. Souder, Y.-F. Chen, J. Korn, and
E. Gansner. Reportal: A web-based portal site for reverse
engineering. In Proceedings of the Working Conference on
Reverse Engineering (WCRE’01), October 2001.

[19] J. Nazario. Source code scanners for better code. Linux
Journal, January 2002.
http://www.linuxjournal.com/article.php?sid=5673.

[20] T. Newsham. Format string attacks, September 2000.
http://www.lava.net/ newsham/format-string-attacks.pdf.

[21] J. Q. Ning, A. Engberts, and W. Kozaczynski. Automated
Support for Legacy Code Understanding. Communications
of the ACM, 37(5):50–57, 1994.

[22] A. One. Smashing The Stack For Fun and Profit. Phrack
Magazine, 7(49), November 1996.

[23] OpenBSD Homepage, http://www.openbsd.org/.
[24] N. Provos. Preventing privilege escalation. Technical

Report 02-2, CITI, Center for Information Technology
Integration, August 2002.

[25] D. Rosenblum and A. Wolf. Representing semantically
analyzed c++ code with reprise. In USENIX C++
Conference Proceedings, pages 119–134, 1991.

[26] SecureSoftware. RATS
http://www.securesoft.com/rats.php/.

[27] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting
Format String Vulnerabilities with Type Qualifiers. In
Proceedings of the 10th USENIX Security Symposium,
August 2001.

[28] D. Wheeler. Flawfinder
http://www.dwheeleer.com/flawfinder/.

System
Name

FLF
Density

(%)

Longest
Path

Total
Functions

Lines
of

Code
bash 2.18 18 824 67,141
crond 2.50 3 120 3,646
elm 1.28 6 468 95,921
exim 1.82 10 549 61,210

fetchmail 3.13 11 351 24,201
gnupg 1.16 6 517 73,274

inn .73 3 407 81,429
joe 4.04 26 644 20,639

lukemftp 3.04 17 558 7,995
lynx 1.00 12 1206 12,9420
mailx 3.33 10 300 9,351
man 3.98 9 226 23,581

minicom 3.91 10 256 11,571
mutt 1.32 15 1139 62,824

netkit-ftp 2.97 7 236 76,695
netkit-inetd 5.50 5 91 1,351
netkit-ping 2.38 1 42 835
netkit-tftpd 1.79 1 56 1,020

nmh 1.53 12 785 52,356
radius-client 4.43 7 158 15,872

screen .94 4 424 24,796
sharutils 6.12 3 49 9,271
stunnel 3.52 8 227 3,820

sysklogd 7.58 10 132 6,115
tcpdump .48 3 627 27,738
telnetd 7.14 8 227 16,480

webalizer 1.33 2 150 6,450
wu-ftpd 1.12 4 358 67,755

wwwoffle 2.85 11 386 44,498
zgv-1 3.32 9 271 8,607
zgv-2 2.58 7 271 8,607

Table 1. Thirty one open source systems
make up the test suite [9]

Function
Name

Function
Coverage

(%)

Number
Vuln.

Number
Found

micq 35.58 3 3
elm 39.82 1 1

dhcpd 18.75 2 1

Table 3. The results of the FLF Finder valida-
tion

8

unistd.h stdio.h getopt.h stdlib.h socket.h

read fscanf getopt getenv recv main
pread scanf getopt long canonicalize file name recv from

pread64 vfscanf getopt long only realpath recvmesg
getcwd vscanf getopt internal secure getenv
getwd fgetc

get current dir name getc
ttyname getchar

ttyname r getc unlocked
readlink getchar unlocked
getlogin fgetc unlocked

getlogin r getw
getpass fgets
ctermid fgets unlocked

gets
getdelim
getline
fread

fread unlocked
ctermid

Table 2. The default Inputs provided by the FLF Finder

9

