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Abstract
pcapstitch: A Tool to Collect Singleton One-way Delay and Loss Measurements

Daniel William DaCosta
Dr. Spiros Mancoridis

Network measurement is an established engineering principle[1]. However, there are still some

aspects that lack general tools for measurement. A simple, general tool to measure one-way traffic

characteristics passively does not exist. Currently, measuring one-way delay and loss requires instru-

mented applications, estimation, complex infrastructure setup, or active measurement techniques.

This makes one-way delay and packet loss difficult to measure, yet these measurements directly

indicate network influenced application utility degradation.

pcapstitch is a tool that collects singleton one-way delay and loss measurements. pcapstitch

collects these measurements passively requiring no application instrumentation (i.e., it can be used

with general network traffic). pcapstitch associates semantically equivalent packets in trace files col-

lected from multiple observation points. Packets must be associated in this way because packets can

be modified in transit. The only other tool with this capability known to this author is OpenIMP[2]

which is a comprehensive measurement suite. It can measure many different network characteristics

both passively and actively. It relies on multiple independent software components, probes and a

measurement controller. In contrast, pcapstitch has a simple setup and is designed solely to collect

singleton one-way delay and loss measurements from trace files. Simplicity, few dependencies, and

operation consistent with the UNIX philosophy are advantages of using pcapstitch.
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Chapter 1: Introduction

Computer applications (herein after referred to as applications) are pervasive in modern life. They

automate tasks that previously required human effort and expertise. Word processing applications

(i.e., Microsoft Word, OpenOffice Writer, and AbiWord) exemplify the potential of computer appli-

cations. Automated spell checking and grammar components improved editing efficiency.

Application utility characterizes an application’s usefulness. An objective analysis of application

utility can identify and aid in the diagnosis of application problems. Application utility measurement

is specific to an application, category of applications, and/or application usage context. For example,

one measure of utility for word processing applications might be the frequency of misspellings.

Computer networks (herein after referred to as networks) allow applications to communicate

with each other remotely over some channel. Using networks, documents that can be created and

edited more efficiently using word processing applications, can be sent across the globe in seconds

using email applications. Email applications, or any other application that relies on networks, are

referred to as network applications. However, networks are made up of imperfect channels. A perfect

channel presents a one-to-one function between sent messages and received messages[3]. Networks

are composed of imperfect channels making networks imperfect. Protocol stacks suffer performance

degradation due to network imperfections. A protocol stack is an implementation (also referred to

as an instance) of a set of reference protocols necessary for communication over a network. Network

applications rely on protocol stacks. Thus, network application utility is dependent on the network

characteristics and their effect on protocol stacks.

Network application utility is influenced by network characteristics through protocol stacks.

Network characteristics describe a networks particular quality or lack thereof. A web browser (i.e.,

Microsoft Explorer, Mozilla Firefox, and Google Chrome) is a type of network application that is

strongly influenced by network characteristics. Network characteristics can largely influence brows-

ing delay, which is one measure of web browser application utility[4]. Galletta et. el. define browsing
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delay as the difference between the time of the hyperlink click and the time of the hyperlink con-

tent presentation [5]. Chat, voice, video, and bulk data transfer are types of network applications

with sensitivities to network characteristics. Delay and loss degrade video quality. Congested net-

work paths can cause excessive data transfer times. Therefore, measuring network characteristics is

necessary to diagnosing application utility degradation.

Network measurement is an established engineering principle[1]. However, there are still some

aspects that lack general tools for measurement. Current tools can be divided into two major cate-

gories, active and passive. Active tools introduce traffic into the network for measurement, passive

tools measure organic network traffic. Passive measurement induces less bias and is preferred when

possible. A simple, general tool to measure one-way traffic characteristics passively does not exist.

Currently, measuring one-way delay and packet loss requires instrumented applications, estima-

tion, complex infrastructure setup, or active measurement techniques. This makes one-way delay

and packet loss difficult to measure, yet these measurements directly indicate network influenced

application utility degradation.

pcapstich (/p• cap• stitch/, capitalization intended) is a simple, general tool to measure one-way

traffic characteristics passively. pcapstitch stitches identical packets from network trace files collected

simultaneously from multiple network observation points. The non-uniqueness of packets over time is

mitigated through the Packet Equivalency Functions and stitch horizon. pcapstitch can measure one-

way traffic characteristics accurately without application instrumentation. Consequently, pcapstitch

can measure network characteristics responsible for application utility degradation.

This dissertation discusses the construction and usefulness of pcapstitch. In Chapter 2, an

overview networks and the TCP/IP protocol suite is given. This chapter then goes on to discuss

the current state of the art tools and why pcapstitch is a useful tool. Chapter 3 discusses, how to

use pcapstitch, how pcapstitch is built, what issues may effect accuracy, and a exemplary use of

pcapstitch. Chapter 4 concludes with how pcapstitch should be used and why it is useful.

Chapter 1: Introduction
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Chapter 2: Background

A network is a set of objects that are interconnect by some medium. A social network is a network

where the objects are people and the medium is some relationship between pairs of people. A

family tree is an instance of a social network. Another type of network is a communication network,

which facilitates the transfer of data between objects (e.g, personal computers, routers, switches, cell

phones) using a medium (e.g, conductive material, fiber-optical material, electromagnetic frequency).

Graphs are commonly used to represent networks. A graph (G = (V,E)) is a set of vertices V

and a set of binary relations or edges E[6]. In a network graph, objects are represented by v ∈ V

and medium interconnects are represented by (v1, v2) ∈ E where v1, v2 ∈ V Figure 2.1, shows a

graph representation of a communication network where the vertices are computing devices and the

edges are medium interconnects.

The Internet is an example of a relatively recent man-made communication network. This work is

concerned with computer communication networks (hereinafter referred to as network(s)). Networks

are mode of devices interconnected by a channel. A channel is a means for data transmission. More

specifically, it is a system to transmit choices represented as symbols from one point to another[7].

Ethernet[8] is an example of a channel used to transmits bits between computers. In networks

represented as graphs, channels are edges or sets of edges.

This master’s dissertation describes pacpstitch, a tool to measure one-way network characteris-

tics. pcapstitch associates the same packet recorded in different locations within a network. pcap-

stitch’s name describes its operation; it stitches two or more packets recorded in multiple libpcap

formatted files. This section contains the background material necessary to understand pcapstitch

operation and construction. Section 2.1 describe basic structure and terminology of modern net-

works. Section 2.2 details the TCP/IP protocols suite, arguably the most popularly used protocol

suite. Network traces are described in Section 2.3. Section 2.4 explains the importance of measuring

delay and loss. Section 2.5 goes over community standards for measuring delay and loss. Section
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WAN-1LAN-1

SWITCH

ROUTER

HUB

LAN-2

SWITCH

WAN-2LAN-3

SWITCH

ROUTER

LAN-4

SWITCH

Wide Area Network

ROUTER

TRACE
UTILITY
MACHINE

Figure 2.1: This diagram shows the basic network building blocks. The diagram is one
WAN (composed of the entire figure) with two constituent WANs. Each constituent WAN
contains two LANs. Switches allow devices on LANs to communicate. Routers allow inter-LAN
communication. A WAN is made up of LANs,WANs, and devices. All edges are referred to
as “links”. The series of links that are dotted represent a “path” from a device in LAN-3 to
LAN-2. A hub is on the path between two routers. Hubs duplicate traffic to all connected
devices. Therefore, the trace utility machine will observe all traffic between these routers.

Chapter 2: Background
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2.6 surveys the most popular network measurement tools for measuring delay and loss. Finally, the

problem that pcapstitch is addressing and solves is succinctly described in Section 2.7.

2.1 Overview of Modern Networks

One model of networks has two device types, end-hosts and core devices. End-hosts generate data

and core devices transfer data. End-hosts (hereinafter referred to as hosts) are devices that reside

on network edges. People interact with hosts. Example hosts are laptops, printers, smart cellular

phones, and video game systems. HTTP servers and DNS servers are also hosts, however most users

rarely physically interacts with them. Core devices are all devices that are not hosts. Generally,

a core devices primary purpose is to facilitate data transfer. Some examples of core devices are

routers, satellites, cellular towers, firewalls, and switches.

Networks can be divided into two broad categories, circuit switched networks and packet switched

networks [9]. These categories are separated by their mechanism for sharing resources. The primary

network resource is bandwidth. Bandwidth is the maximum data amount allowable within a period

of time. Bandwidth is traditionally measured in bits per second ( bps ).

In a circuit switched network, the network resources along a path between two communicating

devices are reserved before the session begins. A session is a continuous period of communication

between two devices. Reservation of resources is referred to as call setup. Circuit switched networks

provide sessions with bandwidth guarantees. Inefficient use of channel resources occurs when sessions

do not fully utilize resources at all times. These inefficient periods are referred to as silent periods.

During a silent period no data is transmitted in a session. In a circuit switched network, ses-

sions have reserved resources, therefore other calls may be delayed even though the resources are

theoretically available. Figure 2.2 illustrates this phenomena in circuit switched networks. Networks

following this pattern are referred to as barbell network because of their resemblance to barbells.

Suppose two simultaneous sessions must take place (lt ↔ rt and lb ↔ rb) both reserving x bps.

Only one session could take place if channel L has less bandwidth than 2x. In a circuit switched

network this is true regardless of the duration or frequency of silent periods..

Packet switched networks were designed to utilize silent periods more efficiently. In packet

Chapter 2: Background 2.1 Overview of Modern Networks
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LT

LB

RT

RB

x bps

x bps

L

Figure 2.2: Two pairs of hosts are trying to communicate through one channel L. Commu-
nication between the left top host and the right top host, respectively lt and rt, reserves x bps.
Communication between the left bottom host and the right bottom host, respectively lb and
rb, reserves x bps. If L cannot provide 2x bps, one of these sessions cannot occur regardless of
whether the active session is sending data.

switched networks data is parceled into packets. A packet can also refer to the unit of data at the

network layer (discussed in Section 2.2.3). Throughout this documents packet(s) refer to parceled

data on packet switched networks and network layer packet(s) refer to network layer data units.

Packets are distributed through the network in a store-and-forward fashion, one link at a time. A

link is a channel that connects any two devices directly through a physical medium. Generally, a

device that delivers packets locally is a host and one that forwards is a core device. The decision

to deliver locally or forward a packet is a function of packet addressing information and device

configuration. Information within a packet that determines ultimate packet destination can also be

referred to as control information.

Packet switch networks are built using a layered architecture. Each layer is a collection of

functionality targeted at a similar goal. An implementation of a layer, is a layer instance. For

example, the goal of the link layer (present in both the TCP/IP model and OSI reference model,

descriptions follow shortly) is to coordinate communication between two directly connnected devices.

An instance of a the link layer would be Ethernet (IEEE 802.3)[8].

Any particular layer presents a delivery interface to the layer directly above and a reception

interface to the layer directly below. The top-most and bottom-most layers are exceptions, respec-

Chapter 2: Background 2.1 Overview of Modern Networks
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tively missing the delivery interface and reception interface. The delivery interface marshalls the

data from the above layer and adds information for intra-layer communication. The reception in-

terface reverses the marshalling transformation of the delivery interface and removes any intra-layer

information.

The OSI[10] reference model and TCP/IP[10] model are the two most popular layered archi-

tecture representations. The OSI reference model is primarily used in conceptual understanding of

networks. It has a corresponding implementation (referred to as the OSI stack) that is not in general

use. The TCP/IP model describes a practical, implemented, layered architecture. It models, with

some loss of precision, how most modern packet-switched networks operate.

Functionality increases when traversing the layers from lowest to highest (physical layer to the

application layer). Each layer provides new guarantees and functionality to its subsequent layer.

The top most layer is an application running on a device. The bottom most layer encodes and

decodes symbols into physical phenomena.

2.2 A Brisk Introduction to The TCP/IP Reference Model

Table 2.1 summarizes the TCP/IP model and OSI reference model. A network can be described

using either. This document prefers the TCP/IP model because it closely resembles network imple-

mentations, something pcapstitch is sensitive to. This model has five layers, each layer has a device

responsible for implementing the layer instance. The five primary devices (respectively from lowest

layer to highest layer) are Communication Devices, Switch, Router, Host and NAPT Router, and

Host. Additionally, each layer has two well-known instances:

• Physical Layer - Ethernet Physical and 802.11 Physical

• Link Layer - Ethernet and 802.11

• Network Layer - IPv4 and IPv6

• Transport Layer - TCP and UDP

• Application Layer - HTTP and DNS

Chapter 2: Background2.2 A Brisk Introduction to The TCP/IP Reference Model
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Layer instances can also be referred to as protocols. This document attempts to consistently use

the term protocol preceded by the particular TCP/IP layer if not obvious. For instance, TCP is a

transport layer protocol.

This section is not exhaustive, it describes devices and protocols to the resolution necessary to

understand pcapstitch. It provides a general description, but in many cases exceptions to these

description can be made. For example, a router often has a remote management interface accessed

through transport and application protocols to facilitate configuration. This would technically make

the router a host; such exceptions are hidden in the interest of clarity.

The remainder of this section contains sub-sections providing a high-level overview of the re-

sponsible device and layer instance. Section 2.2.1 describes communication devices, the Ethernet

physical protocol, and the 802.11 physical protocol. Section 2.2.2 describes switches, the Ethernet

protocol, and the 802.11 protocol. Section 2.2.3 describes routers, the IPv4 protocol, and the IPv6

protocol. Section 2.2.4 describes NAPT routers, the TCP protocol, and the UDP protocol. Section

2.2.5 describes the host, the HTTP protocol, and the SIP protocol.

2.2.1 Physical Layer: Communication Devices, Ethernet Physical Proto-
col, and 802.11 Physical Protocol

Communication devices are associated with the physical layer. They convert symbols representing

information into some physical data representation. Bits are the fundamental symbols of digital

communication devices.

Physical mediums (hereinafter referred to as mediums) can provide one or more channels. A

channel is method for communication. Communication devices usually adhere to standards that

detail wiring, transmission, reception, frequency bounds, valid mediums, and modulation schemes.

Ethernet Physical and 802.11 Physical are common examples of physical layer protocols. The

Ethernet[8] physical layer is a very common wired computer network physical protocol. It has

a number of variants that can create channels on co-axial, twisted pair, or fibre-optic medium.

Most Ethernet Physical protocol variants are defined as a IEEE 802.3 standard. The IEEE 802.11

physical layer is a common wireless network physical protocol. 802.11 variants (i.e., a, b, g, n)

Chapter 2: Background2.2 A Brisk Introduction to The TCP/IP Reference Model
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defines encoding and decoding across Direct Sequence Spread Spectrum, Frequency Hoping Spread

Spectrum, and Infrared.

pcapstitch relies on network trace files collected in the libpcap format (both are discussed in

more detail in 2.3). This file format does not contain any information regarding the physical layer.

However, the physical layer can be the source of delay and loss (discussed in 2.4). pcapstitch can

aid diagnosis of such physical layer issues.

2.2.2 Link Layer: Switches, Ethernet, and 802.11

Switches are devices that implement link layer protocols. They deliver frames between devices on

a Local Area Network (LAN). A LAN is a collection of devices with unique link addresses within a

single address space. In other words, a LAN is the set of devices that can communicate solely using

link layer addresses.

A switch is composed of a set of ports and an interconnect fabric. When referring to network

devices, ports are physical interfaces that accept some medium. The interconnect fabric uses link

addresses to transfer a frame from a device on one port to another device on a different port.

Generally, this can be referred to as routing. A similar procedures is performed by routers, therefore

this process will be referred to as switching to avoid confusion.

Switches compromise channel contention and channel cost. Channel cost can be reduced by forc-

ing all devices in a LAN to share one channel. No two devices can use this channel at the same time

increasing the potential for contention. Contention can be reduced by creating a channel between

all-pairs of devices, this is impractical as the number of devices increases. Switches compromise the

two concerns by sharing multiple channels and distributing contention among them.

In practice the link layer has two sublayers, Medium Access Control (MAC) and Logical Link

Control (LLC). The LLC sublayer is positioned above the MAC sublayer within the link layer. The

MAC sublayer is responsible for negotiating usage among multiple devices on the same channel. The

LLC is responsible for presenting a consisting interface to the network layer and multiplexing/de-

multiplexing frames for multiple network protocols.

Ethernet and 802.11 are common examples of link layer protocols. Both protocols use the IEEE

Chapter 2: Background2.2 A Brisk Introduction to The TCP/IP Reference Model
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802.2 LLC sublayer. Network protocols interacting with Ethernet or 802.11 therefore can use the

same High-Level Data Link Control[10] (HDLC) interface.

Ethernet and 802.11 share similarities at the MAC layer as well. Both protocols rely on a MAC

addresses embedded in the link layer frames. Both protocols rely on a 32 bit Cyclic Redundancy

Check (CRC32) to detect errors within a frame that may have occured during transmission. The

protocols differ in channel control methods. Ethernet performs Carrier Sensing Multiple Access

with Collision Detection (CSMA-CD). Collision detection(CD) allows the Ethernet MAC sublayer

to detect when two devices are transmitting on the same channel at the same time. If this event is

not avoided collision occurs. Carrier Sensing Multiple Access(CSMA) is an uncoordinated procedure

for accessing a channel. CSMA determines appropriate transmission time based on a silent period

and a backoff period determined by previous collisions. 802.11 performs Carrier Sensing Multiple

Access with Collision Avoidance (CSMA/CA). 802.11’s CSMA algorithm offers similar functionality

as Ethernet’s CSMA algorithm.

Collision detection in wireless networks is not feasible. This arises from practicalities of wireless

transmissions:

1. Wireless antennas are half-duplex and therefore cannot receive and send simultaneously.

2. Devices with multiple antennas will be located closer together, so it is likely that the any

received signal will be dominated by the locally sent signal.

Collision avoidance modifies CSMA slightly by adding a probabilistic wait time after a silent period.

By staggering all potential senders collisions are reduced. When a collision does occur it will result

in a failed CRC32 check and the frame will be dropped.

pcapstitch has full visibility into link layer frames. Control information in link layer frames is

not used for packet stitching. pcapstitch can measure delay and loss which can occur at the link

layer.

Chapter 2: Background2.2 A Brisk Introduction to The TCP/IP Reference Model
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2.2.3 Network Layer: Routers, NAPT Router, IPv4, and IPv6

Routers are devices that implement network layer protocols. Routers deliver packets between devices

on Wide Area Networks (WAN). A WAN is a collection of LANs or WANs. Network layer addressing

within a WAN is hierarchical. Figure 2.1 illustrates the difference between LANs and WANs.

A router is composed of a set of ports and an interconnect fabric. The interconnect fabric uses

network addresses to direct packets between two ports. A WAN may contain WANs; intra-WAN

routing reduces the set of possible destinations at any given router.

Unlike MAC addresses (discussed int Section 2.2.2), network addresses are assignable. Routers

require a way of dynamically resolving routes between device pairs as network address are reassigned.

This is why network layer routing is usually hierarchical. If it were not, a router would require enough

memory to store route information about every unique network address. Hierarchical routing solves

this problem by allowing routers to have one address that generalizes many individual addresses.

A packet may go through multiple routers on its journeys to a destination device. The channels

and routers packets traverse en route to destination devices is called a path. A single channel

between between two routers (or between any two devices) is referred to as a link. Throughout

this document, link is used to mean a single physical channel between two devices. This name is

convenient because communication between any two devices, directly connected or through a switch,

is primarily handled by the link layer. Consequently, a path is made up of devices and links between

those devices. The difference between links and paths is illustrated in Figure 2.1.

The Internet Procotol(IP[11]) is the most commonly used network protocol. It has two major

variants: Internet Protocol Version 4 (IPv4[11]) and Internet Protocol Version 6 (IPv6[12]). The

main differnce between the two version is addressing space; IPv4 uses a 32 bit representation for

addresses (232 possible addresses) and IPv6 uses a 128 bit representation for addresses (2128 possible

addresses). Other significant IPv6 differences include the lack of packet fragmentation, a simpler

packet header, and tighter coupling with security mechanisms.

pcapstitch has full visibility into network layer packets. Currently, pcapstitch only supports IPv4.

pcapstitch relies heavily on control information within the IPv4 packet to stitch packets correctly.

Chapter 2: Background2.2 A Brisk Introduction to The TCP/IP Reference Model
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Control information in IPv4 that can change from device to device along a path is not used by

pcapstitch. IPv4 packet fields such as Time-to-Line(TTL)[11], checksum[11] and various optional

fields are example of fields that may change in transit.

Network layer devices that change field devices in unusual ways may negatively effect pcapstitch

accuracy. A Network Address Translation (NAT) device is an example of such a device. NAT devices

provide a one-to-one mapping between network addresses. Information about IPv4 packet control

information used by pcapstitch is found in Section 3.1. Details about packet transformations that

can effect pcapstitch accuracy is found in Section 3.4.

2.2.4 Transport Layer: Host and NAPT Router, TCP, and UDP

The transport layer is responsible for delivery of segments to hosts. Generally, these protocols

are implemented in the host network stack. The host network stack consists of layered protocol

implementations used for communication. There are core devices that also implement transport

layer protocols. Firewalls, throughput throttling devices, and Network Address-Port Translation

Routers (NAPT routers) are examples of such devices.

As in the network layer (Section 2.2.3), pcapstitch uses control information from transport layer

protocol segments to stitch packets. Devices that change certain control information fields in trans-

port layer segments can effect pcapstitch stitching accuracy adversely. A NAPT router is an example

of such a device. NAPT routers use source address (network layer) and source port (transport layer)

information to map to another source address and source port. Unlike NAT devices, NAPT routers

can provide many-to-one mappings. An algorithm maps many source address and source port pairs

to one source address and different source ports. NAPT routers can coordinate traffic from many

different hosts with many different source address through one address. Figure 2.3 illustrates NAPT

router functionality.

Transmission Control Protocol[13](TCP) and User Datagram Protocol[14](UDP) are two very

common transport layer protocols. TCP provides reliable in-order delivery. UDP provides unreli-

able user-segment-preserving delivery. Both protocols offer application multiplexing through port

numbers. Port numbers are transport layer addresses. Multiple application sessions are possible

Chapter 2: Background2.2 A Brisk Introduction to The TCP/IP Reference Model
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HOST A
192.168.0.3

HOST B
192.168.0.4

HOST C
192.168.0.5

NAPT

192.168.0.1

10.0.0.4

DESTINATION

PORT: 11244

PORT: 10113
PORT: 3142

PORT: 6666

PORT: 3143

PORT: 3144

Figure 2.3: In this figure three hosts (A,B,and C) are trying to communicate to Destination
through NAPT . NAPT is a Network Address and Port Translation router. Each host is labeled
with a source IP Address. Traffic from each host bound for Destination has its source port la-
beled prior to entering NAPT . The host IP and port prior to NAPT carries original addressing
information. The destination IP and port of Destination is irrelevant for explain NAPT router
functionality. Each host routes traffic through NAPT interface labeled as 192.168.0.1. NAPT
translates the addresses and ports of these connections such that all traffic source addresses
read as 10.0.0.4 from Destination’s perspective. NAPT differentiates return traffic through
port translation; connections associated with host A,B, and C map to ports 3142,3143, and
3144 respectively. In this way NAPT routers can make traffic from many different hosts appear
to come from only one.
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over a single channel due to port numbers.

TCP reliability is provided through an initiated connection using acknowledgements. Acknowl-

edgements notify a sender that a segment has been received. After some amount of time, the lack

of an acknowledgement can indicate that a segment was not successfully transmitted. During TCP

connection initiation two hosts negotiate initial byte count offsets. Sent Segments (measured in

bytes) increment the byte count offset. Upon reception of a segment an acknowledgement is sent

that indicates the last contiguous byte offset. Closing a connection is also negotiated to ensure that

all sent segments have been received. At any state, there are mitigation strategies for dealing with

lost segments; segment retransmits at increasing intervals followed by ungraceful disconnection.

UDP only guarantees that application data separation is preserved. UDP differs from TCP

in this regard where data is transmitted as a stream requiring applications to encode there own

separation. Another difference is UDP’s lack of reliable data transfer.

pcapstitch has full visibility into transport layer segments. Currently, pcapstitch only supports

TCP and UDP. pcapstitch uses TCP and UDP source and destination port control information to

stitch packets. NAPT routers will negatively impact pcapstitch accuracy, more information can be

found in Section 3.4.3.

2.2.5 Application Layer: Host, HTTP, and DNS

The application layer is the endpoint of any session. A host is any device that implements an

application layer protocol. Consequently, a device on the edge of network, a device with only one

link, or an end system is a host. Traditionally, hosts are clients and servers. Clients are host that

request most of the data in a session. Servers are host that deliver most of the data in a session.

Application protocols transmit data. Packet payload is another way of referring to application

protocol data. Payload is data in a packet that is not control information (i.e. addressing, checksums,

protocol directives).

Exactly whether a device is referred to as a host is context specific. Using the web configuration

mechanism of a switch makes it a host. However, it is still also a switch. In general the role of a device

can be determined by its purpose for existence. If its primary purpose is to execute applications it
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is a host, otherwise it is a core device.

There are many application protocols. Hyper-Text Transfer Protocol[15](HTTP) and Domain

Name Service[16] are two common application protocols. HTTP is what facilitates web browsing with

applications like Firefox, IE Explorer, and Safari. HTTP essentially supports a request/response

protocol. A client specifies what is desired or what is required respectively through GET and POST

methods. A server responds with an error code or the content of the request.

DNS converts textual names to IP numbers usable by IPv4 or IPv6. www.google.com is an

example of such a textual name. DNS subtleties regarding domain name resolution are unnecessary

for a discussion of pcapstitch.

pcapstitch has full visibility into application layer data. Application data is used for packet

stitching by default using a hash function. This can be changed by customizing the PEF (Section

3.1).

2.3 Network Traces

A network trace (hereinafter referred to as trace) records activity on a channel. Network capture,

packet capture, network sniff, and packet sniff are alternative terms for trace. A device that is

running a trace is a network observation point (hereinafter referred to as an observation point).

Traces can be recorded to network trace files (hereinafter referred to as trace file).

Trace files contain information about packets sent and received over a channel. Exactly what

data is recorded and the format of the trace file depends on the specific network trace utility (here-

inafter referred to as trace utility). pcapstitch requires trace files recorded on different channels

simultaneously.

Trace files are effective for monitoring network health. Network health is composed of security,

configuration, and performance.

Understanding the characteristics of malware is useful for prevention, detection, and mitigation.

Malicious software or malware, is software that gives covert access of your device to an unauthorized

party. It is common for malware to coordinate efforts via network communication. Trace files

collected on devices running malware are useful for determining malware behavior, command and
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control infrastructure, and other infected devices.

Various device protocol implementations must be configured to inter-operate on a network. Sub-

tle assumption violations can result in insidious global behavior. Slight configuration changes may

drastically alter overall network behavior. Trace files can be used to diagnose configuration errors

and verify that networks are operating as expected.

Networks are ultimately designed to allow inter-application communication. Network application

utility is therefore based on network performance. Network performance can be estimated through

the analysis of trace files. Trace files with per-packet meta-data (i.e., time, packet offset) can be used

to measure capacity and per-application bandwidth. Capacity or Nominal Physical Link Capacity,

“is the theoretical maximum amount of data that a link or path can support”[17]. Throughout

this document capacity is defined this way unless otherwise noted. For example, capacity can be

measure by sending excessive UDP traffic from one device to another. Received packets over a one

second window (measured using time meta-data) can calculate maximum throughput. pcapstitch is

primarily designed to measure network performance using trace files.

Timestamps recorded in meta-data are very important to network measurements. Ideally, these

timestamps store the time that a packet enters “the wire” or exits “the wire”. This is called “wire

time”, and specifically describes the time of the first packet bit entering a physical medium or the

time of the last packet bit exiting a physical medium. Most trace utilities record “host endpoint

time” where a host is an observation point. Host endpoint time is equal to wire time. It is later

than wire time (when receiving), or earlier than wire time (when transmitting). Host endpoint time

is less accurate than wire time because host delay incurred between wire time and trace utilities.

Among many other delays inherent to modern computer hardware and operating systems, this delay

includes the time required to retrieve packets from a physical medium, the time required to move the

packet over the IO bus, and the time required for the software to retrieve the packet and timestamp

it. The difference between wire time and host endpoint time is processing delay (processing delay is

discussed in Section 2.4.1.

Trace utilities can be software or hardware implements. Software trace utilities take advantage
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of network traffic that already exists on a device. Software utilities operate by duplicating pack-

ets that move between the Network Interface Card (NIC) and Operating system. tcpdump[18],

Wireshark[19], ncap[20], and Snoop[21] are some example of software trace utilities.

Hardware trace utilities are built specifically to collect traces. Hardware trace utilities are also

called network taps. Network taps can be built inexpensively by taking advantage of the physical

properties of a medium. For example, http://hackaday.com/2008/09/14/passive-networking-tap/

describes how to build a network tap for Ethernet. These simple network taps still require a software

trace utility to collect the data. The network tap duplicates network traffic on another link.

pcapstitch requires that trace files be stored in libpcap[18] file format. This file format is gener-

ated by the libpcap library that pcapstitch and many other trace utilities rely on. The file format

specifies how packets are stored and how they should be accessed.

2.4 Delay and Loss: TCP/IP performance killers

Packet delay and Packet loss (hereinafter referred to as delay and loss) affect the performance of all

TCP/IP model layers. All layers either expose the subsequent layer to the current delay and loss

characteristics or transform them. There are two possible transformations that can be applied to

delayed or lost packets. A delayed packet can be dropped or further delay added. A lost packet can

be converted to a delayed packet via error correction mechanisms that adds delay.

The TCP/IP model offers modularity and information hiding. Different protocol implementa-

tions are interchangeable at any given layer of the model. This modularity is demonstrated in Section

2.2 where each layer is described with two example protocol implementations. TCP/IP model lay-

ers do not expose packet formatting or implementation details protecting other components from

modification, exemplifying information hiding.

Unfortunately, these properties of the TCP/IP model permit inefficiencies. Delay transforma-

tions, loss transformations, and unexposed protocol assumptions can cause degraded performance.

Consider a protocol stack with two protocols that engage in retransmission. Specifically, a link layer

and a transport layer both using an Automatic Repeat reQuest[10] (ARQ) protocol. ARQ uses

acknowledgments (or lack of acknowledgements) to determine if packet retransmission is required.
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Application TCP PRC117-PhysicalIP PRC117-Link
P1

P1
P1

P1
P1

P1

P1

P1
P1

P1
P1

P1
P1 P1

P1
P1

P1

P1

P1

P1

P1

Figure 2.4: In this figure an application is trying to send a packet P1 and processes are
protocols layers. When TCP receives this packet it queues it for potential retransmission. The
packet is then handled by IP and sent to the PRC117F link layer where it is queued again.
The PRC117F link layer also queues this packet and tries to send it twice unsuccessfully. Time
elapses and TCP, having failed to receive an acknowledgement, retransmits P1. When the
PRC117F link layer receives this retransmission it has two duplicate packets in its queue. This
causes P1 to use twice the bandwidth as necessary and if more packets needed to be sent could
cause significant performance degradation.

If the transport layer retransmits a packet before the link layer has successfully transmitted the

original packet, duplicate data will be transmitted.

This example is a practical concern, tactical modems such as those embedded in the AN/PRC-

117F Multiband Manpack Radio[22] have ARQ capability. Modulator-Demodulators or modems

are often used as link layer protocols. TCP, a transport layer protocol, also implements a form of

ARQ. Using both of these protocols can result in emergent performance degradation when simply

considering the TCP/IP model abstraction. Figure 2.4 illustrates the potential problems of this

scenario.

Protocols in isolation can cause degraded performance if implementation assumptions are vi-

olated. TCP was built when wired, low error networks were common. TCP thus assumes that

packet loss occurs as a result of congestion (how congestion causes packet loss is discussed in Section
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2.4.2. It implements a congestion mitigation strategy that reduces throughput as more packet loss

is observed. Over time, this reduces congestion. Unfortunately, wireless and extremely high-speed

networks violate this assumption resulting in silent periods artificially imposed by TCP.

Delay and loss affect the TCP/IP protocol stack. The TCP/IP protocol stack affects application

utility. Understanding application utility therefore requires the measurement of delay and loss.

pcapstitch provides a general way for delay and loss to be accurately measured from network trace

files.

The remainder of this section discusses delay and loss in more detail. Section 2.4.1 describes the

different types of delay. Section 2.4.2 describes the different types of loss.

2.4.1 Delay

Delay is the unit of network measurement. All network measurements can be expressed in delay. Loss

is equivalent to infinite delay. Bandwidth is equivalent to delay per-bit. A channel with a bandwidth

of 16Kbps transmits a bit every 60 micro-seconds. The theoretical minimum delay therefore is 60

micro-seconds.

Processing delay, queueing delay, transmission delay and propagation delay are the four types

of delay. Concisely put, they are, delay incurred on a device, delay incurred waiting for resources,

delay incurred to put data into the channel, and delay incurred for data to traverse the channel

respectively. Together they are referred to simply as delay. Delay incurred from one device to

another is one-way delay. The adjective “One-way” when modifying network measurements means

the measurement is taken from packets moving in one direction on a path. Delay incurred from

one device to another and back is Round-Trip Delay or Round-Trip Time(RTT). Through out this

document delay indicates one-way delay unless otherwise specified.

In Section 2.2.2 and Section 2.2.3 interconnect fabric was the mechanism used to move a packet

from one port to another. The duration a packet spends in the interconnect fabric is the processing

delay. The time elapsed processing a packet by network and link protocols on host is also processing

delay. Processing delay is the time needed by a device to read control information and perform

necessary operations. A router’s processing delay is primarily routing. Processing delay in firewalls,
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devices used to verify and censor incoming and outgoing data, occurs during packet inspection.

The fundamental cause of queueing delay is serial channel transmission. While a packet trans-

mission is in progress, other packets must wait for channel availability. During this time packets

must be stored in memory. The memory holding waiting packets is the queue and packets waiting

in it are suffering from queueing delay. It is convenient and generally accurate to think of the queue

as being First-In, First-Out (FIFO). There are many queueing disciplines more complicated than

FIFO, such as Random Early Detection [23] and Adaptive Virtual Queuing [24].

Transmission delay is the time it takes a packet to enter a channel. Dividing packet size (in

bits) by the bandwidth of a channel (in bits-per-second) will expose the transmission time for any

packet. For example, given a 1442 byte packet sent on a 16Kbps (16384bps) channel, 0.7 seconds of

transmission is incurred.

Propagation delay is the time it takes a packet to traverse a channel. The lower bound on

propagation is the physical length of the channel divided by the speed of light. Transmission delay

is the entry cost to a channel and is solely influenced by channel capacity. Propagation delay is the

transmission cost of the channel and is influenced by channel transmission mechanisms and physical

distance between end points of the channel.

Figure 2.5 illustrates the different types of delay. Transmission delay is constant and rarely

adjustable for a given channel. Given the speed of modern devices processing delay can be ap-

proximated as constant unless under severe load. Changing transmission delay or processing delay

usually requires hardware changes. Therefore when trying to reduce delay, queueing delay is usually

addressed first. Queueing delay can be addressed by protocols and device configuration. Increasing

delay is a good indication of network congestion. Queues grow due to channel contention and as

they grow the latest packet waits longer than all previous packets in the queue.

2.4.2 Loss

Packet loss occurs when delay is infinite. In other words, the packet never reaches its intended

destination. Error and congestion are the two causes of loss and how types of loss are categorized.

Together they are referred to simply as loss. When addressing them separately they are referred to
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Figure 2.5: This figure shows a packets path from host A to host B through a router. Sections
along the path are labeled with what type of delay is occurring on that section.
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as loss due to error or loss due to congestion.

Spurious modification of one or more bits in a packet can cause loss. These spurious modifications

are called bit errors. Physical phenomena, faulty hardware, and improper configuration all can cause

bit errors.

These errors indirectly cause the packet to be discarded. Various protocols across all layers imple-

ment error detection algorithms. Checksums and CRC are examples of error detection algorithms.

These algorithms can detect certain errors. A packet is discarded upon detection of an error. A

discarded packet will never reach its destination and therefore is categorized as a lost packet. Prac-

tical network engineering favors packet discarding over processing spuriously modified packets. The

latter can result in unknown behavior.

Loss due to congestion is intimately related to queueing delay (Section 2.4.1). Device queues

are limited by memory. Memory limits dictate how many packets can be queued for a channel. If

a queue is saturated, a new packet that requires queuing must be dropped. When this occurs it is

considered packet loss due to congestion. Congestion on the channel filled the queue leading to a

packet loss.

pcapstitch measures loss by counting unstitched packets. Unstitched packets are packets that

have not been associated with any other packet. Loss measured by pcapstitch is also bounded in

time. The lower bound for the loss is the time the lost packet was sent. The upper bound for the

loss is the time of last successful packet reception where the paths for both packets (last successful

packet and lost packet) were identical. Packet loss bounding is illustrated in Figure 2.6.

2.5 Network Performance Metrics

Consider the three charts in Figure 2.7. The top-most chart shows the performance of TCP (Linux

2.4.20) under optimal conditions (100Mbps, 0% packet loss, 1 <ms delay). Middle-most and bottom-

most show the same TCP implementation on a link with 5% and 10% packet loss respectively. Such

throughput degradation would likely impact application utility. Without additional information

(like specification of link packet loss rate shown in these charts), observing throughput degradation

is insufficient to indicate packet loss. Measurements are needed to identify the cause of throughput
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Figure 2.6: An illustration of how loss time can be bounded. P1 and P2 are two packets. At
tP1 , P1 is sent along the upper path. At tloss, P1 is lost. At tP2 , P2 is sent along the upper
path. At tP ′

2
, P2 is received at the same destination that P1 was destined for. Assuming that

P1 and P2 would have shared the same path and P1 isn’t being held somewhere in the network,
we can bound the time of loss by tP1 and tP ′

2
.

Chapter 2: Background 2.5 Network Performance Metrics



25

degradation.. Measuring performance metrics like packet loss rate is important to understand how

network characteristics affect application utility.

The Internet Engineering Task Force[25] (IETF) IP Performance Work Group has standardized

network performance metrics (hereinafter referred to as metrics) that measure network character-

istics. pcapstitch is a tool for collection of some of these metrics; particularly singleton one-way

delay and loss. In Section 2.6 competing tools are evaluate for their ability to retrieve these metrics

passively. Currently, there is only one tool which can do this (discussed in Section 2.6.6). It has a

number of infrastructure requirements where pcapstitch only requires libpcap, a tool available on

virtually any platform.

In this section, the metrics pcapstitch can collect are described. For convenience they may

be given shortened names. Each metric has one or two short examples of how it could indicate

performance issues at various layers. These examples are not exhaustive, but are given for additional

intuition about metric usefulness.

Methodologies describe how metrics are collected. Reading a sun-dial or a digital clock are

two different methods for measuring time. The method of metric collection in pcapstitch relies on

network trace files and stitching. Network trace files are discussed in Section 2.3 and stitching is

discussed in Section 3.1.

A method can rely on active measurement or passive measurement. The conservatism of a method

refers to the likelihood of the methodology influencing the measured results. Passive measurements

are more conservative than active measurements. Passive measurements rely on network traffic that

arises from natural use. In other words, traffic not generated solely to take measurements. Active

measurements rely on artificial network traffic, that is traffic injected into the network solely for

measurement.

pcapstitch is passive in its measurement methodology. It uses traffic recorded at multiple ob-

servation points simultaneously; no extra traffic is required. However, care must be taken during

collection because even passive measurement methodologies can influence measurements. Descrip-

tions of tools that perform passive or active measurement can be found in Section 2.6
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Figure 2.7: This figure shows TCP performance measured with respect to throughput. It was
done using SCP an application that relies on TCP. Along the x-axis is time. All three charts
were measured on a link with a capacity of 100Mbps and 1 <ms delay. In the top-most chart,
the TCP performance measurement is on a link with 0% packet loss. In the middle-most chart,
the TCP performance measurement is on a link with 5% packet loss. In the bottom-most chart,
the TCP performance measurement is on a link with 10% packet loss. (NB: Data throughput
data was retrieved from trace files using pcapstitch.)
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Metrics can be of singleton, sample, or statistical type. A singleton metric is a unit measurement.

pcapstitch collects singleton metrics, that is, a measure of one-way delay and loss is reported for each

packet record in a trace file. A sample metric is a collection of singletons. Running pcapstitch over

trace files with more than one packet will result in a sample. A statistical metric derives some useful

information from a sample or samples. The minimum delay of all results reported by pcapstitch

would be statistical.

Statistical metrics are derived metrics and singleton metrics are original metrics. By way of

example, human height is an original metric, average height by race is a derived metric. Collection

methods of original metrics involve actual measurement. Derived metrics are synthesized from one

or more original metrics.

Metrics always refer to data in terms of bits. This is the unit of data on networks. However,

packets are usually discussed in terms of bytes. A byte is eight bits, throughout this document

conversion is not necessarily explicit. Time is in seconds possibly with metric modifiers (e.g., mil-

liseconds, microseconds). Rates will always be measured in some unit per seconds.

The rest of this section discusses metrics that pcapstitch can measure. Section 2.5.1 describes a

one-way delay metric. Section 2.5.2 describes a packet loss metric.

2.5.1 Delay

pcapstitch can measure Type-P-One-way-delay[26]. As explained in Section 2.4.1, throughout this

document one-way delay is referred to as delay unless otherwise noted. Delay measures the duration

taken for a packet to travel from a source device to a destination device. When discussing or

measuring delay, the terms source and destination will be used to indicate the source device of the

packet and the destination device of the packet.

RFC2679[26] describes an active method to collect sample metric Type-P-One-way-Delay-Poisson-

Stream. This method collects singletons measured by injecting traffic into the network according to

a Poisson distribution into a sample. The Poisson distribution is used because it has been shown to

be robust to synchronization and minimize measurement influence.

pcapstitch measures passively via trace files. Therefore, a sample discipline to avoid synchroniza-
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tion and measurement influence is unnecessary. A sample metric that contains all recorded delays

within a time frame replaces it. This sample metric is referred to as a delay sample set. Using the

nomenclature from RFC2679, Type-P-One-way-Delay-Stream metric.

Type-P-One-way-Delay-Median and Type-P-One-way-Delay-Minimum, delay central tendency

and minimum delay respectively, are two common metrics pcapstitch can be used to collect easily.

These metrics as defined in RFC2679 using Type-P-One-way-Delay-Poisson-Stream as the sample

source. When using pcapstitch, these metrics will use Type-P-One-way-Delay-Stream. Again, since

no active measurement is being used, there is no need to apply a sample discipline.

Delay measurements can be used to estimate delay central tendency, calculating delay fluctua-

tions, estimating link capacity, and estimating congestion. Estimating delay central tendency before

deploying applications and protocols with potential for conditional delay intolerance is crucial to

maintain application utility. If a protocol using an ARQ based algorithm with a maximum re-

transmission time of 50ms and 4 maximum retransmission attempts is on link with an estimated

delay central tendency of 200ms throughput, performance will suffer. Redundant data would be

retransmitted irrespective of whether it was successfully received.

Applications or protocols that depend on consistent delay measurements need to understand

delay fluctuations. Consistent delay, even if very long, is preferable to delay fluctuations when

running Voice over IP applications. Delay fluctuation is also referred to as jitter.

The minimum delay along a path can provide a lower bound on capacity. Recall that capacity

is the maximum theoretical throughput and a path is a collection of links a packet traverses from

source to destination. Any link on a path cannot have a lower capacity than the minimum measured

delay times the maximum packet size in bits. Figure 2.8 illustrates this be example.

2.5.2 Packet Loss

pcapstitch can measure Type-P-One-way-Loss[27]. Throughout this document this measure is re-

ferred to simply as loss. Loss measures whether a packet was successfully received at some destina-

tion.

Type-P-One-way-Average can be used to understand central tendency of loss along a path or
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If total trip time is measured 
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cannot be slower than 2Mbps.
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Figure 2.8: This sequence diagram shows a packet traveling along a path composed of links
of differing bandwidths. Measuring the delay along the path can give us a lower bound on the
capacity of any given link.

link. This metric is defined in RFC2680 using Type-P-One-way-Packet-Loss-Poisson-Stream as the

sample source. When using pcapstitch, these metrics will use Type-P-One-way-Loss-Stream. Again,

since no active measurement is being used, there is no need to apply a sample discipline.

Loss measurements are most useful in understanding performance degradation of protocols and

applications. For example, as discussed in Section 2.2.5, TCP retransmits packets when loss is

estimated. TCP assumes loss is due to congestion, thus when a retransmission occurs it increases it

retransmission interval exponentially. TCP allows a finite amount of outstanding unacknowledged

transmitted packets. Because an acknowledgement represents the last contiguously received byte, a

lost packets can significantly degrade transmission performance. Figure 2.9 provides an example of

how loss can degrade TCP performance.
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Figure 2.9: This sequence diagram represents an application using TCP to communicate to a
destination host. It demonstrates how loss can negatively effect TCP throughput performance.
Intermediate layers and exact TCP operation details are elided for clarity. P0 is the initial byte
sequence. The maximum number of outstanding packets permitted by this TCP implementation
is 3. P1 is sent and lost, P2 is sent and acknowledged with P0 since the receiving host is missing
P1, likewise with P3. At this point the application can send no more data because the TCP
send window is full. TCP enters backoff period of t before retransmitting P1 which is again
lost causing a 2t backoff period. An exponential backoff pattern will be repeated until P1 is
successfully received or a maximum retransmission limit is exceeded. During this time, the
application can send no more data.
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2.6 Measurement Tools Related to pcapstitch

Network measurement is important toward understanding application utility and protocol perfor-

mance. There are many tools that can be used to passively or actively approximate or measure

one-way delay and/or loss. This section will choose the most popular variants of these tools.

pcapstitch was built to fill a particular role; simple, UNIX friendly, passive measurement of one-

way delay and loss from trace files. To our knowledge OpenIMP[2] and pcapstitch are the only tools

that can measure delay and loss passively for general application data using only libpcap trace files.

pcapstitch differentiates itself from OpenIMP by being simple, lightweight, and aligning closely with

the UNIX philosophy[28].

The rest of this chapter is separated into sections that describe popular tools that can measure

or approximate one-way delay and/or loss. Section 2.6.1 describes ping and traceroute, tools that

can actively approximate one-way delay and loss using ICMP messages. Section 2.6.2 describes

tcptrace, a tool that can passively approximate one-way delay and loss of TCP traffic from trace

files. Section 2.6.3 describes iperf, a tool that can actively measure one-way loss. Section 2.6.4

describes itg, a tool that can actively measure one-way loss and delay of UDP traffic. Section 2.6.5

describes OWAMP, a protocol with a number of implementations that is intended for active one-way

measurements. Section 2.6.6 describes Trajectory Sampling and OpenIMP, OpenIMP implements a

form of Trajectory Sampling that can be used to measure one-way delay and loss.

2.6.1 Ping and Traceroute

The Internet Control Messaging Procotol (ICMP) [29] is used for network diagnostics. It can be

classified as a transport protocol since it relies on the network layer. However, in many cases the

network layer and ICMP are more intimately involved than the other layers. For example, if a router

on LAN L receives a packet destined for host A on L that was sent from host B on L, a ICMP

redirect message may be sent to B. It would indicate that future messages should be sent directly

to A via the link layer. This interaction between the network layer and ICMP intentional breaches

modularity and information hiding principles.
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The ICMP echo request is a simple but useful ICMP message type. A network device configured

appropriately will reply to an echo request. This reply will be sent to the host that generated the

original echo requst. Echo requests and replies can be used to identify and debug network and device

issues.

Ping[30], an active network measurement tool common to many platforms, uses ICMP echo mes-

sages for network characteristic discovery. Ping periodically sends echo requests to a host specified

by an IP address. Replies that can be matched with previously sent requests are successful pings.

Each request is time-stamped so that a round-trip-time (RTT) can be calculated upon receiving a

reply. If a reply to a request is never received, it is considered a loss.

Traceroute[31] is used identify hops along a path. It uses ICMP echo message and manipulation

of the time-to-live (TTL) IP field. The TTL field is used to prevent messages from remaining in

network loops indefinitely. The field with is 8 bits and can have a valued between 0 and 255. Each

time an IP packet moves through a core device, its TTL field should be decremented (refer to the

next sentence for why “should” is used instead of “is”). If a core device (described in Section 2.1)

receives an IP packet with a TTL value of 1, the packet has expired and should be dropped (in

both case “should” is used because there is no way to enforce externally that core devices behave

in this way). A device may send an ICMP message to the sender notifying them that some packet

has expired. Therefore, it is possible to “trace” the links in a path by sending ICMP echo messages

with incrementing TTL fields.

Ping and Traceroute can be used to approximate one-way delay by halving singleton RTTs.

Asymmetric to and from paths would cause such approximations to be error prone. Assuming

symmetric paths would not exclude such delay approximations from errors; asymmetric queue delays

occur on symmetric paths.

Ping and Traceroute can also be used to approximate one-way loss. When a loss occurs it is

impossible for ping to determine if the request or reply was dropped. Thus, the average loss rate

measured using ping is only an upper bound on the one-way loss rate.

Finally, ping and traceroute are not a general tools and can only be used to measure or approx-
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imate network characteristics for ICMP echo messages.

2.6.2 tcptrace

tcptrace[32] can gather detailed information from a variety of trace files. It is used to monitor and

debug tcp performance behavior passively. Unlike pcapstitch, it cannot stitch sent packets in one

trace file with received packets in another. tcptrace assumes all traffic was collected at a single

observation point and recovers information based on RFC specified TCP behavior. tcptrace can

output a number of formats including ones that can be input into other utilities to create TCP

performance and behavior charts.

tcptrace can approximate one-way delay by halving singleton RTTs. Asymmetric to and from

paths would cause such approximations to be error prone. Assuming symmetric paths would not

exclude such delay approximations from errors; asymmetric queue delays occur on symmetric paths.

All retransmitions reported by tcptrace could be considered one-way loss. Packets taking longer

than TCP retransmit time for arrival would be erroneously counted as loss. Determining whether

an echo request or reply was dropped is analgous to determining whether a TCP segment was

dropped or an acknowledgement was dropped. In this respect, both ping and tcptrace one-way loss

approximations need to form some assumption about assymetry (or lack thereof) on a path. This

technique of loss approximation is only applicable when the trace file is collected from the source

host. Ostermann et el.[33] describe a more complex mechanism for approximating loss given TCP

variants that improves accuracy.

tcptrace can also detect segment re-ordering. Segment re-ordering occurs when a host receives

TCP segments with a byte offset less than the greatest byte offset seen thus far (details to handle

byte sequence overflow are elided for simplicity). Two scenarios cause packet re-ordering: somewhere

on the path between the source and destination host, that segment was moved with respect to

its sending sequence or the first segment was determined lost by the sender and retransmitted.

Approximating one-way loss using tcptrace requires assumptions with respect to how to handle

segment re-ordering. This technique of loss approximation is only applicable when the trace file is

collected from a destination host.
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tcptrace can analyze all TCP traffic collected in a trace file but cannot be used on UDP traffic.

For more information please refer to the tcptrace website: http://www.tcptrace.org.

2.6.3 iperf

iperf[34] is an application layer tool that is used to measure bandwidth for UDP and TCP traffic.

Unlike ping and tcptrace, it coordinates two running iperf instances on potentially different hosts.

iperf can actively measure one-way loss under certain configurations. iperf does not permit one-way

delay measurements easily.

From an applications perspective, loss cannot be detected when using TCP as the the transport

layer. TCP segments sent by one iperf instance will either eventually be delivered or the TCP

connection will be dropped. Segments delivered by TCP may be retransmitted a number of times;

iperf will not have information about these retransmissions. iperf cannot approximate one-way loss

when operating in TCP mode.

iperf permits application data transfer using UDP. UDP (discussed in Section 2.2.4) does not

guarantee datagram delivery and therefore will not hide loss from applications. A datagram labeled

with a unique application payload can be sent and if that packet was not received, it can be considered

loss. In this way, iperf can detect one-way loss when operating in UDP mode.

iperf cannot be used to measure one-way delay and loss on general application traffic. The data

iperf sends is determined solely by iperf.

2.6.4 ITG

ITG[35] is a active network measurement tool built to generate network traffic in a repeatable way.

One-way loss and delay can be measured from ITG generated traffic. Like iperf (see Section 2.6.3),

ITG coordinates multiple ITG instance on potentially different hosts. ITG can measure one-way

delay and loss under certain configurations. DITG[36] is a variant of ITG with improved perfomance,

concurrency, and logging capabilities. In this section we refer to them both as ITG and choose the

most competitive features with respect to pcapstitch.

ITG can generate network, transport, and application layer traffic according a stochastic process.
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The process may vary with inter-departure time(IDT) or packet size (PS). IDT is the time between

two consecutivetively sent packets from the same host. PS is self explanatory.

ITG can measure one-way delay and loss while operating in UDP mode. Collecting singleton

measurements requires that ITG run in a mode that records sender log file (using ITGSend) and

a receiver log file (using ITGRecv). ITGDec can decode these log files and output text containing

singleton one-way delay and loss measurements. ITGDec can also output statistical measurements

where the entire log file is treated as a sample measurement.

One-way loss cannot be calculated and one-way delay must be approximated when ITG is run

in TCP mode. Loss cannot be calculated because segments sent by one ITG instance will either

eventually be delivered or the TCP connection will be dropped. Segments delivered by TCP may be

retransmitted a number of times; ITG will not have information about these retransmissions. One-

way delay in TCP mode is approximated by the difference in payload transmission and reception

time at the application layer. TCP’s retranmission mechanism will convert loss to delay; this will

cause error in delay measurements. TCP segment acknowledgements dropped may cause senders

to retransmit unnecessarily. This will cause delay measurement error in subsequent packets; data

delivery to TCP (where ITG applies time-stamps) and actual packet transmission time may diverge

as previous segments are retransmitted (Figure 2.9 illustrates this phenomena).

ITG can only simulate general application traffic using stochastic processes with IDT and PS

variables. Certain measurement scenarios may call for realistic application protocols and payload or

accurate TCP one-way delay and loss measurement; ITG could not be used in these cases.

2.6.5 OWAMP

OWAMP (One-Way Active Measurement Protocol) is a one-way active measurement protocol de-

scribe in RFC 4656[37]. There are a number of different tools that implement OWAMP such as

J-OWAMP[38] and owamp[39]. Previous to OWAMP, there was not an standard that allowed traffic

exchanges for the collection of singleton one-way metrics. Like pcapstitch, OWAMP relies on high

accuracy time synchronization. Such synchronization is available through GPS and CDMA devices

that can be used as high accuracy clocking sources. Streams of UDP packets sent to and from hosts
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running OWAMP servers is the mechanism for singleton collection. OWAMP can measure one-way

delay and loss accurately.

OWAMP relies on schedules and slots to make singleton measurements. Schedules describes when

packets will be sent within a slot. Slots are time frames where packets can be sent. Schedules can be

fixed quantity or probabilistic. A fixed quantity scheduled slot sends a packet after a constant delay.

A probabilistic scheduled slot sends a packet after a delay determined by a Poisson distribution.

Probabilistic schedules can be calculated exactly by multiple parties through the use of a pseudo-

random number generator seeded to the same value.

Schedules and slots allow OWAMP test packet receivers to calculate one-way delay and loss.

The difference between a packets slot schedule send time and its receive time is a singleton one-way

delay measurement. Mitigation of send time error and skipped packets is done through test packet

control information. Loss is calculated through sequence numbers within the test packets. Upon

completion of a test session singleton measurements can be retrieved.

OWAMP cannot emulate application protocols or data and cannot use TCP. Consequentely, it

is not an effective tool when trying to understand how one-way loss and delay impact application

utility.

2.6.6 Trajectory Sampling

Trajectory sampling[40] samples packets at different devices within a network. The samples can be

used to determine flow route path and flow performance. A packet hash function is used to identify

the same packet at different observation points. Packet hash functions and the packet equivalency

functions (described in Section 3.1) are nearly identical concepts. In both, the goal is to make a

unique packet signature from network, transport, and application fields. These fields must be chosen

based on their likelihood of changing in transit and ability to discriminate different packets.

Zseby et el.[41] explains how packet hash functions can be used to measure one-way delay. They

evaluate how different packet hash functions perform with respect to processing time and collision.

One-way delay singletons are measured by collecting hashes at multiple observations points in the

network. When a packet hash is collected the time of its collection is recorded. The difference in
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collected time of two packets with the same packet hash is one-way delay. Singleton one-way loss

measurements can be collected if a packet hash has less collisions than expected.

Trajectory Engine[42],impd4e[43], and OpenIMP[2] are all tools that utilize trajectory sampling

concepts to collect various measurements. Tools based on trajectory sampling are used primarily for

network engineering and thus sampling is preferred due to the volume of traffic. They can passively

measure one-way delay and loss.
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2.7 Problem Statement

Measuring networks is an important component toward understanding application utility. Applica-

tion utility characterizes an application’s usefulness. Objective analysis of application utility can

identify and aid in then diagnosis of application problems. Network characteristics directly (through

application protocol interaction) and indirectly (through transport, network, link, and physical layer

protocol interactions) impact application utility. The relationship between network phenonema and

application utility must be understood to predict application usefulness in untested networks, to

identify areas for application improvement, and to generally improve network performance.

Accurate one-way delay and loss singleton measurements are fundamental to measuring networks.

Virtually any other network metric can be derived from these two singleton metrics. It is common for

these metrics to be approximated from traffic with known round-trip behavior like ICMP Echo mes-

sages (discussed in Section 2.6.1) and TCP segment acknowledgements (used by tcptrace, discussed

in Section 2.6.2). These approximations are inherently error prone due to asymmetric network paths

and queuing delay.

Simulation and active measurement are reasonable for approximating application utility in var-

ious network scenarios. Two common tools that can make such measurements are iperf and ITG

(respectively discussed in Sections 2.6.3 and 2.6.4). Eventually, live tests on actual networks are

required to understand exact application utility. Measuring one-way delay and loss singletons are

critical for such tests. For any application, this can be done through application instrumentation.

This approach has drawbacks, it must be done for every application that requires measurement and

the instrumentation overhead may change application and network behavior.

In the past, accurate one-way delay and loss singleton measurements lacked accurate time syn-

chronization. These measurements require infrastructure to synchronize clocks at multiple points of

observation. Now, synchronization is widely available through clock information in GPS or CDMA;

both are common in almost any mobile device. When such sources are unavailable, NTPv4[44] can

provide time synchronization with bound error.

OpenIMP[2] is a passive, general network measurement infrastructure that can collect one-way
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delay and loss measurements. It consists of N distributed Measurement Servers (impd), a Result

Data Collector (impcol), and the OpenIMP Shell (impsh) that can be used to send commands to

the distributed components and retrieve their return values. Data can be collected as raw files or

using the IPFIX[45] protocol. Setting up and configuring OpenIMP is non-trivial.

pcapstitch is a lightweight passive, general network measurement tool that can collect one-way

delay and loss measurements. Libpcap[18] is its only dependency and can be found easily for many

platforms and operating systems. It outputs data in a simple human readable text files using a space

delimited format. This format ensure that further processing by arbitrary applications is easy.

pcapstitch fills the gap left in the absence of a simple tool for passive, general network measure-

ment. It has been used successfully to measure various network applications. It has few dependencies

and relies on standard trace file libraries. pcapstitch is also a case study in building system tools

using Haskell[46], a pure (i.e., side effect free), strongly typed, programming language. pcapstitch

contains an embedded domain specific language that parses network headers demonstrating a prac-

tical use for simulated dependent types. Most importantly, pcapstitch adheres to a number of the

precepts from the UNIX philosophy, namely:

• Make each program do one thing well.

• Store data in flat text files.

• Use shell scripts to increase leverage and portability.

• Avoid captive user interfaces.

Chapter 2: Background 2.7 Problem Statement
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Chapter 3: pcapstitch

pcapstitch is a tool that collects singleton one-way delay and loss measurements. pcapstitch collects

these measurements passively and requires no application instrumentation (i.e., it can be used on

general network traffic). pcapstitch associates semantically equivalent packets in trace files collected

from multiple observation points. Packets must be associated in this way because segments can

change in transit. The only other tool with this capability known to this author is OpenIMP[2]

which is a comprehensive measurement suite. It can measure many different network characteristics

both passively and actively. It relies on multiple independent software components. In contrast,

pcapstitch has a very simple setup and is designed solely to collect singleton one-way delay and

loss measurements from trace files. Simplicity, few dependencies, and operation consistent with the

UNIX philosophy are advantages of using pcapstitch.

Chapter 2 provided the background necessary to understand relevant construction details, use

cases, and practical concerns of pcapstitch. It provided the reader with some intuition about why

one-way delay and loss is important for understanding application utility. In Section 2.6, related

tools are discussed and in Section 2.7 the technological gap pcapstitch fills is exposed.

This chapter discusses pcapstitch in detail. Section 3.1 defines the terminology that is necessary

for understanding the operation of pcapstitch and provides an abstract description of how pcapstitch

collects measurements from trace files. Section 3.2 goes through a simple experiment using pcapstitch

that describes pcapstitch invocation, heuristics for stitch horizon determination, and examples of

how to use pcapstitch output in a unix environment. Construction of pcapstitch is discussed in

Section 3.3; general program control flow, how stitching is implemented and pcapstitch’s embedded

domain-specific language for header parsing are the main technical issues addressed. Section 3.4

describes issues that should be considered when using pcapstitch. Finally 3.5 outlines the steps

necessary to install pcapstitch.
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HOST
1 ROUTER HOST

2A' A

Transmit A'

t0

Transmit A

t1

Figure 3.1: A simple network with three observation points, Host1, Router, and Host2. A
packet A′ is routed from Host1 to Host2 via Router. Between time t0 and t1, A′ is processed
by Router. This processing will change certain portions of A′ creating A. A is a different
packet when comparing bytes but equivalent when comparing meaning. That is, it represents
the original packet A′ sent from Host1. Thus we say that A′ and A are semantically equivalent
packets.

3.1 Pcapstitch Overview

According to the cloc tool[47] pcapstitch contains just under five thousand lines of code (4892)

throughout twenty-two different files. All of this code directly or indirectly supports the creation of

a stitch. A stitch is a set of semantically equivalent packets, each from different observation points.

Semantically equivalent packets have one point of origin within a network. Semantically equivalent

packets is illustrated in Figure 3.1.

A Packet Equivalency Function (PEF) determines packet semantic equivalence. A PEF compares

expected static structures from two packets. Referring again to Figure 3.1, an appropriate PEF would

merge A′ and A into a stitch. Throughout this document, merging means to place a packet from

an observation point into a stitch’s semantically equivalent set. If pcapstitch were run on two trace

files collected at Host1 and Host2, given an appropriate PEF, a single stitch would be created by

merging A′ and A into that stitch’s semantically equivalent set.

Protocol fields within a packet are used by a PEF. Understanding how networks might change

these fields is key to constructing the right PEF. For instance in Figure 3.1, Ethernet source and

Chapter 3: pcapstitch 3.1 Pcapstitch Overview
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destination address could not be used because routers on the transmission path between a source and

destination device will alter those fields. However, in Figure 3.3, Ethernet source and destination

address could be used because the two hosts are directly connected on a LAN. pcapstitch contains

two additional non-protocol field components that can be used in a PEF. One ensures that merges

only take place between packets from different trace files and another will only allow merges between

packets with equal application payload hashes. An application payload hash is a hash of the portion

of data in the application layer of a packet.

pcapstitch creates stitches from one or more trace files collected at one or more observation

points. Stitches are used to measure singleton one-way delay and loss. The pcapstitch output

format maintains all recorded trace file times of merged packets in each stitch. Merge packet times

are timestamps indicating when a particular packet was observed by a trace utility. The merge

packet recorded times in a stitch allow measurement of:

• One-way latency through the difference of the earliest merged packet and the latest merged

packet.

• One-way loss by noting if a stitch’s semantically equivalent set contains less merged packets

than expected.

The stitch creation process starts by reading a packet from a trace file. This packet is then

checked for semantic equivalency against a list of stitches using a PEF. If a semantically equivalent

packet is found in a stitch’s previously merged packets, then the recently read packet is merged with

that stitch. If no semantically equivalent packet is found in any stitches, the recently read packet is

merged into an empty stitch.

Stitches are removed from the list according to the stitch horizon. The stitch horizon defines

stitch list length by time. The latest merged packet in any stitch in the list minus the earliest

merged packet in any stitch in the list defines the list time length. Earliest stitches are removed and

outputted from the stitch list until the list time length is less than or equal to the stitch horizon.

The stitch horizon operation is illustrated in Figure 3.2.

Chapter 3: pcapstitch 3.1 Pcapstitch Overview
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Trace File A Trace File BTrace File C

B

A C

Trace File Time Line

t1 t2 t4t3... ... tn-1 tn

t'1 t'2... ... t'n'-1 t'n'

Stitch Time Line

Current Stitch Horizon:
(t'n' - t'2 ) >= Stitch Horizon

Figure 3.2: An illustration of stitch horizon operation. Packets are read in from multiple
trace files. Each packets has a timestamp associated with it, t1, . . . , tn that indicates when
the packet was recorded in the trace file. These packets are merged in chronological order and
their timestamp changes to that of the latest merged packet, t′1, . . . , t

′
n. This second queue

(highlighted) consists is the stitch list. The stitch horizon are all stitches that satisfy the
predicate t′n − t′i < h where i ≤ n and h is the specified stitch horizon time.
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A stitch horizon is necessary for an accurate measurement of loss. As discussed in Section 2.4.1,

loss is equivalent to infinite delay. It is impossible to distinguish delay and loss using this definition

for any finite time experiment. In practice, an upper bound time can be used to assume a delayed

packet has been lost. A reasonable upper bound could be derived by finding the lowest throughput

link in the network, calculating the time necessary to send the largest possible packet using the

lowest throughput link, multiplying that time by the number of links in the network, multiplying

the number of nodes in the network by some estimate on processing time, and summing these last

two values. This values estimates the time it would take a packet to traverse every link and device

in the network and can be used for the stitch horizon. Assuming a perfect PEF, a stitch horizon

greater than any occurring packet delay will allow pcapstitch to measure loss accurately.

Perfect PEFs are generally not possible. Given enough packets, two packets will eventually be

incorrectly identified as semantically equivalent regardless of the PEF. Packets that are incorrectly

identified as semantically equivalent are referred to as collisions. The number of packets is not the

primary cause of collisions. To simplify this discussion, the network is treated as a probabilistic

process generating packets according to some distribution. Using this model, the likelihood of a

collision increases over time and with maximum network throughput because more packets can

be generated. Assuming uniqueness of packet fields within a time-frame can mitigate the risk of

collisions. This is another function of stitch horizon.

Making the stitch horizon as short as possible can mitigate collisions. A stitch horizon that

mitigates value repetition of the smallest field used by a PEF will reduce collision probability. An

estimate for this time can be calculated using fv/(l/8∗1/m) where fv is the number of unique values

of the field, l is the fastest link in the network, and m is the minimum packet size allowable. For

very fast networks this value may be prohibitively small. In these cases it is important to remember

that multiple fields from the PEF must collude to cause collision. Therefore, this estimate will likely

be conservative.

Shorter stitch horizons bound memory usage and improve performance. Trace files can be large.

Chapter 3: pcapstitch 3.1 Pcapstitch Overview
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A trace file recorded on a 100Mbps link at full utilization for an hour can reach 40GB. Setting

a stitch horizon of an hour when running pcapstitch on this trace file will cause the stitch list to

possibly contain 40GB of data. pcapstitch does not store entire packet payload in the stitch list,

it only stores control information and application payload hashes. However, it is possible that this

40GB trace file consists entirely of minimum size packets with no application payload. Under these

conditions the stitch list would still approach 40GB in size. More data in a list generally means more

packets in a list. More packets in a list means more PEF comparison on every new packet read from

a trace file. This increases the amount of time it takes pcapstitch to complete. In general, a stitch

horizon should be set as long as possible given memory requirements, performance requirements,

and PEF collision fragility such that a delayed packet will never be erroneously calculated as lost.

pcapstitch’s usefulness with respect to the state of the art is described in Section 2.7. The stitch

horizon is why pcapstitch is simple, fast, and accurate. Conceptually, the stitch horizon and the

embedded domain-specific language for parsing network headers are the most technically interesting

pieces of pcapstitch.

3.2 Operation Demonstration

pcapstitch is best demonstrated through an experiment. This experiment will determine one-way

median delay between two nodes in a network from passive application traffic. This demonstration

will provide:

• An overview of how to use pcapstitch

• Intuition for choosing the correct pcapstitch options

• Examples of how to generate formatted results from pcapstitch using common unix utilities

This experiment will be run on the two node barbell network illustrated in Figure 3.3. This network

is an “experiment” running on the University of Utah’s Emulab System[48]. Emulab is a network

testbed that allows for actual networks to be instantiated through NS2[49] topology configuration

Chapter 3: pcapstitch 3.2 Operation Demonstration
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Figure 3.3: A two node barbell network that our experiment is being run on. The link has
a throughput of 100Mbps. Traffic moving from the right node to the left node will suffer an
additional (with respect to than transmission and queuing delay) 6ms delay and an additional
packet loss rate of 5% (this will be above any packet losses that may be caused by a queue
overrun). Traffic moving from the left node to the right node will suffer no additional delay
(other than transmission and queuing delay) and no additional loss (other than any that might
be caused by a queue overrun).
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files. Link conditions, network devices (routers and switches), and host operating systems can all

be specified. When swapped into Emulab, actual machines are allocated and the network topol-

ogy is controlled through sophisticated virtual LAN setups. Link conditions are emulated using

DummyNet[50].

In this network both nodes are considered observation points, that is, each node records sent and

received network traffic in a trace file. Both nodes are running RedHat Linux 9.0. Consistent with

Figure 3.3, we will refer to the two nodes (observation points) as left and right. Application traffic

will be generated using Secure CoPy (scp), an application available through the OpenSSH Suite[51].

scp allows for data to be transferred between two host over a network. scp is secure because it

encrypts this data while in transit.

The experiment will use scp to move a 20MB file from left to right. A random file can quickly be

generate via dd if=/dev/urandom of=/tmp/random.data bs=1M count=20. During the transfer,

trace files from the two nodes will be generated, therefore trace utilities on both nodes should be

started before performing the experiment. This can be done by sudo tcpdump -w /tmp/trace.pcap

-s 0 -i eth3 on both nodes. The -s 0 directs tcpdump to collect all data from the packet. If

this is excluded, application payload may be truncated in the trace files. Once the trace utilities are

running on both nodes, the experiment can be started using scp /tmp/random.data right:/tmp/.

After the transfer is complete, both trace utilities can be stopped.

Trace files from the experiment can now be processed by pcapstitch. pcapstitch will stitch

packets sent from one node with packets received at the other node. As pcapstitch is processing,

uniformly formatted output will be generated. For all stitches, each merged packet has the time it

was observed at different observation points. As noted earlier, this allows singleton one-way delay

measurements from each stitch. Stitches are parameterized by the stitch horizon and the packet

equivalency function, both are options for pcapstitch.

Three options can be specified at invocation to modify how stitches are created:

1. The stitch horizon time specified with -H

2. The maximum stitch count specified with -m.
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3. The packet equivalency function specified with -p.

pcapstitch can be invoked without any specified options by executing pcapstitch pcapfile1 pcapfile2

... pcapfilen where pcapfile1, pcapfile2, ..., pcapfilen are trace files. This will set a default stitch

horizon time of 30 seconds and a maximum stitch count of 2. The default PEF will use network and

transport source and destination addressing information, network ID, network offset, application

payload hashes, and will ensure that all merges occur between packets from different trace files.

The maximum stitch count specifies the maximum number of merges a stitch can have. When a

stitch has a packet merge count equal to the maximum stitch count new packets cannot be merged

with it. This can be exploited to improve performance; stitches with a merge count greater than

or equal to the maximum stitch count need not be compared for potential merging with the PEF.

Given the network in Figure 3.3, the maximum packet stitch count would be two. Maximum stitch

count can be modified by using -m x where x is a positive integer greater than 0. If 1 is used all

stitches will only have one merge.

Stitch horizon specifies how long a stitch can be merged with newly read packets from trace

files. Figure 3.2 illustrates stitch horizon operation. The link in figure 3.3 is an Ethernet link

with a throughput rate of 100Mbps. Ethernet’s maximum frame length is 1518 bytes, minimum

transmission time will be approximately 0.130ms = (1518 ∗ 8)/(108). Therfore, 0.130ms is the

minimum stitch horizon time for this experiment. Anything less is likely to generate stitches with a

merge count of one because any mergable packet will be outside the stitch horizon upon reading the

next packet. This calculation only accounts for transmission delay. In Section 2.4.1 components of

delay are discussed; specifically, processing delay, queuing delay, transmission delay and propagation

delay. The stitch horizon must account for all of these delays and PEF collision fragality. The

maximum segment length of Ethernet is 100 meters. This experiment has one segment, assuming

propagation at the speed of light makes our propagation delay less than a microsecond. Thus,

propagation delay is estimated to be 0. Queue delay can be estimated using the NIC transmission

queue size. Reception queueing delay can be ignored because devices in this experiment can handle

traffic as fast as the network can deliver it. On left and right the transmission queue can grow to
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100 packets making maximum queuing delay 13ms (0.130ms ∗ 100). Finally, we add 6ms because

of the induced link delay and get 20ms = ceil(13ms + 0.130ms + 6). An alternative to analytically

deriving the stitch horizon, which requires intimate knowledge of the network, would be to derive

it empirically before or after the experiment with ping. Running ping right reports a RTT of

6.19ms, adding this to previously calculated propagation and queueing delay results in 20ms =

ceil(6.19ms + 0.130ms + 13ms)

A stitch horizon of 20ms needs be shown as less than fv/(l/8∗1/m). This will provide confidence

that PEF collisions will not occur in the 20ms stitch horizon. The 2 byte network ID field will be

used to measure PEF collision fragility. Most modern operating systems increment the IPv4 ID

field with every packet. When fragementation is required, two packet fragments may have the same

ID but the IPv4 offset field will differ (the IPv4 offset field is also included in the default PEF).

Choosing only the network ID field is conservative; if the time window for uniqueness is greater than

20ms confidence with respect to few collision will be improved. Therefore, fv = 65536, l = 100Mbps

and m = 66(Minimum Ethernet frame size = 12[gap]+8[preamble]+14[header]+4[trailer], Minimum

IPv4 packet size = 20, Minimum Transport segement size [UDP] = 8). Based on this information,

346ms is expected before two packets with the same network ID are sent. The current 20ms stitch

horizon holds because it is less than 346ms. Stitch horizon time can be modified by using -H x(where

x is a positive real number) on the command line. In the current pcapstitch revision, stitch horizon

must have a precision greater than or equal to a micro-second. In this experiment a stitch horizon

of 20ms can be set with the -H 0.02 option.

A packet equivalency function (PEF) is a function that tests if two packets are semantically

equivalent. The PEF can be modified using -p s where s is a string that describes the PEF. The

PEF is specified in a syntax referring to protocol layer fields and composed using +. Possible layer

fields are:

• Link.Source - Link layer source address

• Link.Destination - Link layer destination address

• Link.Payload - The protocol being carried by the link layer
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• Net.Source - Network layer source address

• Net.Destination - Network layer destination address

• Net.ID - Network layer ID

• Net.Offset - Network layer fragementation offset

• Net.Payload - The protocol being carried by the network layer

• Trans.Source - Transport layer source address

• Trans.Destination - Transport layer destination address

• FileMatch - Packets will only be merged if they did not come from the same trace file

• App - Hash of the data in the transport layers payload.

This experiment uses a PEF of FileMatch+Link.Payload+Net.Payload+Net.Source+

Net.Destination+Net.ID+Net.Offset+Trans.Source+Trans.Destination+App. This is the de-

fault pcapstitch PEF and specifies that the PEF will use Network and Transport source and des-

tination addressing information, Network ID, Network Offset, application payload hashes, and will

ensure that all merges occur between packets from different trace files. The comparisons will occur

in the order specified from left to right.

The current revision of pcapstitch requires that trace files be in a libpcap[18] format. Trace files

should be captured from obversation points that are time synchronized. Stitches from unsynchro-

nized trace files can cause incorrect results due to:

• A stitch leaving the stitch list too early causing a subsequent semantically equivalent packet

to not be merged

• A stitch entering the stitch list too early causing a PEF collisions

• One-way delay measurement error
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Consider two packets that should be merged and a horizon time set appropriately, given the first

noted case, these two packets will be removed from the stitch horizon without being merged. Con-

sider three packets where two of those packets should be merged and a horizon time set to avoid

PEF collisions, given the second noted case, time synchronization inaccuracy can cause collisions.

The third case is obvious; one-way delay is calculated by the difference in time recorded at two

different observation points. Sensitivity to the time synchronization requirement can be managed

with proper parameters based on network detail specifics. This experiment uses NTPv4[52] for time

synchronization. NTPv4 over a LAN can be expected to achieve better than 5ms accuracy for time

synchronization[44]. The stitch horizon option should be adjusted to account for this by setting a

stitch horizon of 25ms via -H 0.025.

pcapstitch outputs results in a space delimited text file. Figure 3.4 gives a sample of the output

from pcapstitch when run on trace files collected from this experiment. The output columns are

described as:

1. Flow ID - This is a unique integer associated with a quintuple containing network source

address, network destination address, transport protocol, transport source address and trans-

port destination address. This ID will be associate with traffic bi-directionally by defining the

quintuple as (srcl, dstl, proto, srct, destt) where:

• srcl is the greater of the source and destination network address when compared in

integral form

• dstl is the lesser of the source and destination network address when compared in integral

form

• proto is the transport layer protocol

• srct is the transport source address if the network source address is greater than the

network destination address and the transport destination address otherwise

• dstt is the transport destination address if the network source address is greater than the

network destination address and the transport source address otherwise
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2. Wire length - This is size in bytes of the packet at the link layer.

3. Link Layer Type - The protocol used at the link layer.

4. Link layer Source Address - The link layer source address.

5. Link Layer Destination Address - The link layer destination address.

6. Network Layer Type - The protocol used at the network layer.

7. Network Layer Source Address - The network layer source address.

8. Network Layer Destination Address - The network layer destination address.

9. Transport Layer Type - The protocol used at the transport layer.

10. Transport Layer Source Address - The transport layer source address.

11. Transport Layer Destination Address - The transport layer destination address.

12. Merge Records - Each merge is separated by |. Each merge record is a triple containing time

of packet recording, trace file that the packet was recorded in, and offset of the packet within

that trace file (starting at 1). The merge records are chronologically order from left to right.

This text format makes processing and analyzing within a unix environment straightforward.

Figure 3.5 shows a script that converts the pcapstitch output from this experiment into a gnuplot[53]

graph of one-way latencies. One-way singleton delay is calculated by subtracting the earliest packet

record time and latest packet record time from a stitch. In this experiment, a lost packet would only

have one merge record.

Figure 3.6 shows one-way delay consistent with the experiment topology and analytic propagation

delay. The right to left traffic indicates a one-delay around 6ms which is the additional delay specified

in the Emulab topology. The left to right traffic shows a number of one-way delay measurements

near 0.100ms which is consistent with the analytic calculation for propagation delay of 0.130ms.

Figure 3.7 demonstrates how aggregate packet loss rate can be calculated. If this script was

stored as plr.sh, running it twice via grep ’10.1.1.2 10.1.1.3’ /tmp/scp-output.stitch |
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#!/bin/bash
TFILE=‘tempfile‘
I=‘cat $1 | sed -e "s/|\|,/ /g" -e "s/(\|)//g" \
| awk ’BEGIN{i=0;}{if(i==0){i=$12}}END{print i;}’‘
cat $1 | grep ’10.1.1.2 10.1.1.3’ |\
sed -e "s/|\|,/ /g" -e "s/(\|)//g" |\
awk -v i=${I} ’
BEGIN{init=i;
print "set xlabel \"Experiment Time(s)\"";
print "set ylabel \"One-way delay(s)\"";
print "plot \"-\" using 1:2 title \"Left->Right\" \
with lines,\"-\" using 1:2 title \"Right->Left\" with lines";}
{
if(NF>14){printf("\t%f %f\n",$12-init,$15-$12);}

}END{print "end";}’ > ${TFILE}
cat $1 | grep ’10.1.1.3 10.1.1.2’ |\
sed -e "s/|\|,/ /g" -e "s/(\|)//g" |\
awk -v i=${I} ’
BEGIN{init=i;}
{
if(NF>14){printf("\t%f %f\n",$12-init,$15-$12);}

}END{print "end";}’ >> ${TFILE}
cat ${TFILE} | gnuplot -persist
rm \${TFILE}

Figure 3.5: A bash script to convert the data presented in figure 3.4 into a one-way latency
graph.
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Figure 3.6: The graph produced by running Figure 3.5 on the pcapstitch output. Figure 3.4
shows a small sample of that output.
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#!/bin/bash
grep -v UnknownLink | sed -e "s/|\|,/ /g" -e "s/(\|)//g" |\
awk ’
BEGIN{}
{
if(NF>14){gcount=gcount+1;}
else{bcount=bcount+1;}
}END{
print bcount/(gcount+bcount);
}’

Figure 3.7: A bash script that will calculate aggregate one-way packet loss rates from pcap-
stitch output.

/tmp/plr.sh and grep ’10.1.1.3 10.1.1.2’ /tmp/scp-output.stitch | /tmp/plr.sh would

calculate the aggregate packet loss rate in both directions. Those results are 0% for left to right

traffic and 0.049208% for right to left traffic. These values are consistent with the network topology

defined in Figure 3.3.

This section started with a demonstration experiment to measure one-way median delay on a net-

work illustrated in Figure 3.3. Figure 3.8 shows a script to collect this measurement. If this script was

stored as median-delay.sh, running it twice via grep ’10.1.1.2 10.1.1.3’ stitchfile.out |

median-delay.sh and grep ’10.1.1.3 10.1.1.2’ stitchfile.out | median-delay.sh would

calculate the one-way delay in both directions. The result of running this script on the output

in Figure 3.4 returns a median one-way delay of 0.001333s for traffic sent from left to right and

0.00598693s for traffic sent from right to left. NTP reported time synchronization accuracy should

be used to find a range for each of these values. Both nodes listed an accuracy of at least 0.300ms.

Therefore, true one-way median delay is between 0.001033s and 0.001633s for left to right traffic

and between 0.00568693s and 0.00628693s for right to left traffic.

3.3 Construction of pcapstitch

pcapstitch was tested and built on a Linux[54] x86 environment using the Haskell[46] programming

language. The most recent version of pcapstitch is compiled with version 6.12.3 of the Glasgow

Haskell Compiler (GHC) [55]. Detailed information about how to install pcapstitch can be found in
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#!/bin/bash
sed -e "s/|\|,/ /g" -e "s/(\|)//g" |\
awk ’
BEGIN{count=1;}
{
if(NF>14){values[count]=$15-$12;count=count+1;}
}END{
asort(values);
if(count%2==0){o=(values[count/2]+values[count/2+1])/2;}
else{o=values[(count-1)/2+1];}
print o
}’

Figure 3.8: A bash script that will calculate one-way median delay from pcapstitch output.

Section 3.5.

Haskell is a static, pure, functional, type-safe, lazy evaluated programming language. Haskell is

statically typed and static; all typing information must be known (or must permit inferencing) dur-

ing compilation and it is not interpreted. Haskell’s purity highly discourages side-effects. Common

imperative mechanism such as variable mutation are not available. Side-effects can occur through a

set of unsafe operations or using monads; the former option is highly discouraged. Mathematically,

monads are constructs from category theory. In Haskell, monads allow the composition of computa-

tions and can be used to simulate side-effects. Haskell is functional because it is pure and because,

in many cases, Haskell computation can be carried out through lambda calculus (i.e., substitution).

These properties provide the basis for a strong type-system that gaurantee’s safety. Haskell’s type

systems is an extended version of the inferencing Hindley-Milner[56] type system. It supports poly-

morphism through type classes. Type classes offer an interface which types must implement to be

included within a type class. In addition, it supports a number of type extensions that provide

richer capability. Some of these extensions and capabilities are demonstrated in Section 3.3.2 which

describes pcapstitch’s embedded domain specific language for network header parsing. Haskell sup-

ports lazy evalution; values will not be computed until they are needed. This is opposite of how a

strict language behaves. Consider the pseudo-code x = 2 + f(); print x; . A strict language

will calculate the first statement before proceeding to the second statement. Haskell and other lazy
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languages will store a deferred operation 2 + f() as the value of x. Evaluation of x will not be

forced until print x is called.

From a programming perspective, three components of pcapstitch make it’s construction techni-

cally interesting:

1. pcapstitch was constructed in Haskell

2. pcapstitch’s embedded domain specific language for header parsing

3. pcapstitch’s process for stitching efficiently

This section will examine these three components. Components 2 and 3 will have dedicated sub-

sections while component 1 will be discussed throughout this section. Section 3.3.1 gives an overview

of pcapstitch construction. Section 3.3.2 explains pcapstitch’s embedded domain specific language

(item 2). Finally, Section 3.3.3 details how pcapstitch stitches packets efficiently (item 3).

Throughout this section, specific Haskell modules are referred to by name and italicized. With

the exception of the Main module, pcapstitch modules can be identified with the prefix Net-

work.Pcapstitch. The Main module is the pcapstitch entry point..

3.3.1 Construction Overview

A high-level pcapstitch control diagram is shown in Figure 3.9 and the software architecture is shown

in Figure 3.10. Control flow starts when pcapstitch is invoked with command line arguments. Upon

successfully parsing the command line options, pcapstitch enters its main processing loop. The

processing loop reads, chrononologically, the next packet from the trace files, constructs a Message

from the packet by parsing packet headers, removes and outputs any expired stitches from the stitch

list according to the stitch horizon, and finally attempts to merge the Message somewhere into the

stitch list. This section will go over the control points shown in Figure 3.9 in some detail and refer

the reader to specific portions of the source code.

As discussed in section 3.1, pcapstitch is invoked with a list of trace files and optional command

line flags. pcapstitch handles command line arguments according to [57] in Network.PcapStitch.Options.

Flags are parsed from the command line using the System.Console.GetOpt module. Each possible
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flag results in a lambda or a string documenting an error. This lambda list is threaded using monadic

composition. In this way, parsing the command line is accomplished through a number of state tran-

sitions. The initial state is defined in Network.Pcapstitch.Options (refer to Section 3.1 for the default

options). A completed options data structure is constructed by each lambda receiving an old option

state, performing some operation according to a command line flag, and returning an new option

state.

Network trace files are converted to PcapSource data structures within Network.Pcapstitch.PcapSource.

Each PcapSource maintains four fields:

• Trace file name - The trace file name provided to pcapstitch through the command line.

• Trace file handle - The file handle provided by Network.Pcap.

• Packet count offset - The offset into the file handle, in packets. For instance, a packet count

offset of 4 indicates that the next packet read would be the 5th packet in the file.

• The “On Deck” packet - An already extracted packet that has yet to be processed.

A PcapSource is created for each trace file; thus a list of PcapSources is the source of packets to

merge.

Each PcapSource has one packet loaded “on deck”, in other words, read from a trace file but not

processed. Processing creates a data structure from a packet that is suitable for stitching. Loading

“on deck” packets allows for chronological processing, a requirement for efficient stitching. Given two

trace files, the next packet from both must be loaded to observe their timestamps for chronological

processing. This assumes that packets are recorded in the trace file in chronological order. This

assumption can be violated on occasion which results in loss of accuracy (discussed in Sub-Section

3.4.5).

The next packet to merge is selected from a PcapSource with the earliest “on deck” packet. The

list of PcapSources is kept ordered according to their “on deck” packet timestamps. When an “on

deck” packet is removed from a PcapSource, it is replaced by a new packet from that PcapSource’s

trace file, and that PcapSource is re-inserted into the list of PcapSources. This ensure that the
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earliest “on deck” packet is always at the front of the list of PcapSources. When a PcapSource has

no further packets it is closed and removed from the list of PcapSources. Thus, when the list of

PcapSources is empty, no further packets can be read, pcapstitch can output all remaining stitches

in the stitch list, and exit.

Processed “on deck” packets from the list of PcapSources are converted to Messages using Net-

work.PcapStitch.Message. A Message is the implementation of a stitch. Thus all packets are con-

verted to Messages that represent singleton stitches. The Message contains all information necessary

for a PEF to evaluate semantic equivalence. It also contains a list of triples, that represent a merge.

The triple contains the same content as a single merge record within a stitch outputted by pcapstitch

(discussed in Section 3.2).

Processing the “on deck” packet is primarly focues on parsing the protocol layer headers. It

is initiated by calling getPacketEvent from the ManageablePacketEvent type class (discussed

shortly). getPacketEvent parses the network headers using Network.PcapStitch.Header.Header,

Network.PcapStitch.Header.Link, Network.PcapStitch.Header.Network, Network.PcapStitch.Header.Transport,

qualified Network.PcapStitch.Header.TCP, qualified Network.PcapStitch.Header.UDP, qualified Net-

work.PcapStitch.Header.IPv4. These header parsing modules heavily rely on pcapstitch’s embedded

domain specific language for header parsing found in Network.PcapStitch.HeaderNinja and further

discuessed in Section 3.3.2.

Messages implement the ManageablePacketEvent type class from Network.PcapStitch.ManageablePacketEvent.

ManageablePacketEvent presents a uniform interface for stitching packets. The ManageablePack-

etEvent type class provides the following important operations:

1. Merge testing - Using the PEF to determine if two messages are semantically equivalent.

2. Equality testing - Determine if two Messages are identical. That is, the Message’s are actually

the same Message. This is different than semantically equivalence. In a impure language a

pointer would be used to reference the same Message in different data structures. Haskell is

pure, therefore every data value is a copy, resulting in multiple identical copies that reside in

different data structures. Equality testing finds these identical copies.
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3. A merge operator - Will merge one Message with another.

4. Output a Message - Will output a line conformant with the stitch output described in Section

3.2.

From the stitching perspective, all operation are done through this interface. In this way, the actual

implementation of a stitch (currently a Message) can be altered or replaced.

ManageablePacketEvent stitching occurs in Network.PcapStitch.PacketEventManagement. For

clarity, packets are all converted to Messages (singleton stitches), and Messages are instances of

the ManageablePacketEvent type class which PacketEventManagement uses for stitching. When

PacketEventManagment retrieves a ManageablePacketEvent, it checks for a semantically equiva-

lent ManageablePacketEvent, using merge testing, within the stitch list according to the PEF. If a

semantically equivalent ManageablePacketEvent is found, it is merged with its using the merge func-

tion. If no semantically equivalent ManageablePacketEvent is found, the ManageablePacketEvent is

added to the stitch list. ManageablePacketEvents are purged and outputted when the stitch horizon

dictates their removal from the stitch list.

3.3.2 Type Safe Header Parsing

Network header (subsequently referred to as headers) parsing is a common task in many different

types of software. Network drivers, network monitoring tools, routers and switches all typically

contain some software header parsing mechanisms. Parsing headers involves separating byte strings

into fields and converting those fields to more appropriate types.

In practice, parsing headers can be a tedious task requiring boilerplate infrastructure. Incon-

gruence between bytes, typically the smallest transmission parcel in networks, and fields specified

in bits requires error prone bit manipulation. Additionally, the fields themselves need not be byte

aligned but the sum of all the fields must be.

Network Header Parser (NHP) is a prototype library that addresses these issues. NHP is writ-

ten in Haskell[46] using type-level programming, a flexible record infrastructure[58] and Template

Haskell[59]. It reduces the amount of boilerplate code by allowing specifications of headers through
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individual field combination. NHP automatically performs bit manipulation and type conversion

guided by field declarations. Guaranteeing byte alignment in headers relies on dependent types[60]

faked[61] in Haskell. In other words, if fields are combined in such a way that the combined length

modulo eight does not equal zero the code will not compile. The parsed headers are returned in

flexible records with a type specific to the header.

NHP is a prototype evolving embedded domain specific language to simplify and strengthen the

safety of network header parsers. A user of this language constructs network header parsers by declar-

ing fields and combining them. NHP is contain solely withing the Network.PcapStitch.HeaderNinja

module within the pcapsitch.

Declaring Fields and Building Headers

A Field is a data structure that holds three values: field name, field data conversion function, and

bit size. The field name is self-explanatory, however the name itself does require some initial setup

due to the nature of the records package. The template function makeName reduces boilerplate code

by generating field names automatically from a provided string.

The data conversion function converts a byte string to a desired data type. The byte string is

only as long as the bit size of the ceiling of the bit size of the field divided by eight. The specific

type signature of the data conversion function is B.ByteString -> BitGet fieldtype. b The bit

size value specifies how long the field is in bits. Bit sizes are represented through a generalized

algebraic data type[62] and have a number of convenience values as well as the ability to specify an

arbitrary bit size. The RequestFieldSize data structure hides a type-level programming mechanism

that uses Peano numerals[63]. This mechanism is used during header construction to ensure byte

alignment at compile time via type class constraints. The template function arbitraryBits can

be used to generate fields of arbitrary bit size, using it avoids building a verbose Peano numeral by

hand. An example field specification can be found in Figure 3.11. RequestFieldSize (convenience

constructors removed for brevity) and an example field specification follows:

Fields are combined using the infix, right associative .++. operator. This operator folds the

fields from right to left to build headers. headerTail is an empty header that must be placed at
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-- A view of how bit sizes are represented.

data RequestFieldSize a where

RFSStop ::RequestFieldSize FZero

RFSNBits::Peano b=>b -> RequestFieldSize a -> RequestFieldSize (Add a b)

-- An example field specification

$(makeName "FragOff")

bits = $(arbitraryBits 14)

fof = Field FragOff getbgword16 (RFSNBits bits)

Figure 3.11: A shortened view of the field size data structure and an example of how to
construct a field.

ipv4header =

verf.++.hlenf.++. dscpf.++.tlenf.++.ipidf.++.flagsf.++.fof

.++.ttlf.++.protof.++.chksumf.++.sourcef.++.destf.++.headerTail

Figure 3.12: Constructing a header through field combination and how to use recordType
and wrapInData.

the right most position of any field combination expression. .++. keeps a running bit length total

of the growing header through the use of the RequestFieldSize data structure. Combining fields

to form headers is demonstrated in Figure 3.12. An example of how fields are combined follows:

Parsing a Header from Byte String

Byte string are parsed with getHeader. Byte alignment is ensured by the

ProperByteAlignment type class constraint using a type function that checks if the header bit

length modulo eight equals zero. getHeader requires as input header and byte string. It returns

a type-specific record based on the header. Errors are handled through the Either data structure.

Fields are accessed by field name through the !!! operator. The types of these records can be

unwieldy, however, using the recordType function and the template function wrapInData address

this issue. The recordType function ties a header record type to a variable and wrapInData creates

a data structure that contains the header record. The getHeader type signature and a full example

of Ethernet header parsing follows:

Conclusions and Future Work

NHP is a prototype-embedded-domain-specific language for automatically generating network header

parsers. It does so from network header specifications relying on Haskell’s type system to ensure at
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getHeader :: ProperFormedRequestField t a => Header (t a) rec

-> B.ByteString -> Either String (rec (IdKindStar),B.ByteString)

getHeader = ...

$(makeName "Source")

sourcef = Field Source getbgword64 RFSWord48

$(makeName "Destination")

destf = Field Destination getbgword64 RFSWord48

$(makeName "Protocol")

protof = Field Protocol (liftM EthernetType . getbgword16) RFSWord16

ethheader = destf .++. sourcef .++. protof .++. headerTail

ethheadertype = recordType ethheader

$(wrapInData "EthernetFrame" ’ethheadertype)

getEthHeader = getHeader ethheader

handleError = handleHeaderError "Error Parsing EthernetFrame"

getEthernetFrame :: B.ByteString -> (EthernetFrame,B.ByteString)

getEthernetFrame bs = (EthernetFrame rec,rest)

where

tuple = handleError . getEthHeader $ bs

rec = fst tuple

rest = snd tuple

source (EthernetFrame x) = x !!! Source

destination (EthernetFrame x) = x !!! Destination

payloadtype (EthernetFrame x) = x !!! Protocol

Figure 3.13: The type signature of the getHeader function.

compile time that headers are byte aligned. NHP demonstrates a practical use of a rich, type-safe,

declarative language, namely Haskell. Future work includes a more elegant solution for handling

optional fields within headers (NHP currently allows bolt on options that circumvent byte-alignment

constraints), exploring how the record package can be used to enforce constraints between fields,

making the data conversion input parameter more specific to the bit size of the field, and making

the specification language more concise and readable.

3.3.3 Packet Stitching

Stitching is implemented in Network.PcapStitch.PacketEventManagement (referred to hereafter as

PacketEventManagement). This module is show in Figure 3.14. PacketEventManagement has three

primary concerns: accuracy, performance and memory usage. Section 3.1 describes how stitch

horizon manages these concerns. In this section, the implementation details are shown.

Main initiates PacketEventManagement by calling runPacketEventManager with the list of

PcapSources and options. This first step is to initialize the PacketEventManagementMutableHash
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Data: MergeOrEqual

Data: PacketEventManagementMutableHash

Equal Merge

PacketEventManagementMutableHash

chronoOrderedcompleteChronoOrdered currentTimeht longestChronoLengthoptspktstate !-!

binsearchdropAt

hashMergeOrEqual

insertByS

mergeOrdered'

mergefail

possibleOutOfOrderInsert

mergeorequal mergesuccess

perPacketData

perpkt

purge

purgeComparespan'

runPacketEventManager

Figure 3.14: This is a visualization of PacketEventManagement. All figures following the first
are legends. The second figure shows two normal functions where f calls g. The third figure
shows data type declaration. The forth figure shows edge classification.

data structure. PacketEventManagementMutableHash contains all the data to keep the stitch list

and the stitch horizon consistent. The following descriptions represent fields within

PacketEventManagementMutableHash that are pertinent to stitching:

• Options - Contains the options provided to pcapstitch on invocation. This will not change

once PacketEventManagementMutableHash has been initialized.

• Chronologically ordered ManageablePacketEvent list (COM)- This is the stitch list.

• Chronologically ordered Completed ManageablePacketEvent list (COCM) - A stitch list where

all stitches have a merge count equal to the maximum stitch count.

• ManageablePacketEvent Hash Table (MHT) - A hash table that contains all the Manage-

ablePacketEvents that are in the COM. This is how semantically equivalence is tested for

efficiently.

• Current packet time - The time of the current ManageablePacketEvent that is being merged.

Both the COM and the COCM are implemented using the Haskell Data.Sequence (Sequences)

package based on Finger Trees[64]. Sequences have amortized constant time lookup of elements at

Chapter 3: pcapstitch 3.3 Construction of pcapstitch



68

the front and back and O(log(min(i, n−i))) time lookups for elements at index i where n is the size of

the sequence. If the assumption of chronological ordering within one trace file always held, inserting

ManageablePacketEvent, merged or singleton, would always have constant time. However, in some

cases, this assumption will not hold. Due to this, a merged or singleton ManageablePacketEvent

must be re-inserted into the list chronologically. This accomplished through a binary search. Thus,

every new ManageablePacketEvent will require O(logn) time where n is the maximum size of the

stitch list given stitch horizon and network parameters.

Stitching increments PacketEventManagementMutableHash state. The initial

PacketEventManagementMutableHash state is one where the COM, COCM, and MHT are empty.

This state is then folded across all packets from the list of PcapSources using foldPacketDataWith

located in Network.PcapStitch.PcapSources. A fold is a high-order function that applies a function

to a data structure, accumulates a result at each element, and returns a final value. Given the list

[1, 2, 3, 4, 5] folding addition over would result in a value of 15. Similarly,

PacketEventManagementMutableHash is folded over packets chronologically from trace files using

the perPacketData function located in Network.PcapStitch.PacketEventManagement.

perPacketData increments PacketEventManagementMutableHash state by one packet. It per-

forms five major ordered actions each time it is called with a new packet:

1. Conversion - Converts the packet to a ManageablePacketEvent. This is where the packet is

processed.

2. Purge - Removes and outputs any ManageablePacketEvents from the COM or COCM that

have expired according to the stitch horizon. This is where stitch horizon consistency is

maintained.

3. Look-up - Looks for a ManageablePacketEvent in the MHT that is semantically equivalent

according to the PEF. This is where semantically equivalence checks are carried out.

4. Handle Look-up Result - If the look-up failed, insert the ManageablePacketEvent into the

COM and MHT. If the look-up succeeded, merge the ManageablePacketEvent or ,if the Man-
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ageablePacketEvent has a merge count equal to the maximum stitch count, move the Man-

ageablePacketEvent to the COCM and remove it from the MHT. This is where merging takes

place.

5. Increment Current packet time - Change the current time to the timestamp of the input packet.

This is how the stitch horizon is slid into the future.

The COM and COCM maintain stitch horizon consistency through the purge action. Se-

mantical equivalence is checked during the look-up action. Each ManageablePacketEvent has a

hash generated from the components referred to by the PEF. That is, if a PEF was specified of

Net.Source+Net.Destination+Net.ID+Net.Offset, a hash would be generate from the network

layer source and destination address,the network layer id, and the network layer offset for each Man-

ageablePacketEvent. Hash tables that do not assume a perfect hash function have lists at each hash

entry. Finding a hash table entry involves matching a hash entry and, if the hash entry list is greater

than one, another equivalence function to locate the correct list element. HMT is no different, the

hash of a ManageablePacketEvent is used to locate the list, and the PEF to locate the correct list

element.

When a ManageablePacketEvent is removed from COM (because it is outside the stitch horizon

or because it is complete) it must also be removed from the HMT. Not doing so can cause colli-

sions with future ManageablePacketEvents. Removing a ManageablePacketEvent from the HMT is

different than looking for a merge. When a merge takes place a hash and PEF are used. When

a removal takes place a hash and equality are used. That is, a removal needs to remove identical

ManageablePacketEvents from the COM or COCM and the HMT. This prevents removal of spurious

ManageablePacketEvents in the HMT.

The MergeOrEqual data structure in Network.PcapStitch.PacketEventManagement manages these

two types of look-ups. All ManageablePacketEvents are entered into the HMT wrapped in a merge

type. When a look-up according to PEF is desired the hash table is queried with a Hash and a

ManageablePacketEvent wrapped in a merge type as well. If a query is made against the HMT with

a hash and a ManageablePacketEvent wrapped in a equal type, equality is used for look-up.
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Figure 3.15: Performance of running pcapstitch on various trace files with various stitch
horizons.

ManageablePacketEvent is the work-horse of pcapstitch. Consequently, it is where the bulk

pcapstitch run-time is spent. This section will conclude with performance measurements. Real time

was coarsely measured using time. The data for this performance experiment was measured on a

network similar to Figure 3.3. pcapstitch output was direct to /dev/null. The baseline comparison

is tcpdump outputting the file to /dev/null. Tcpdump uses libpcap to read packets from trace

files as pcapstitch does. Therefore, its performance should be the lower bound of pcapstitch’s

performance. Figure 3.15 shows different file sizes and how they perform as stitch horizon increases.

Figure 3.16 shows different packet counts and how they perform as stitch horizon increases. Both

figures generally show multiplicative scaling with tcpdump performance. However, larger stitch

horizons start to impact performance exponentially.
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Figure 3.16: Performance of running pcapstitch on various trace files with various packet
counts.
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3.4 Miscellaneous pcapstitch Issues

pcapstitch can measure singleton one-delay and loss on networks. The term “network” is vague;

in practice when measuring on networks every detail matters. When collecting trace files, details

are equally important. The detail depth of a network and its constiuent compenents (e.g., devices,

software, link types, usage patterns) relate to confidence about measurement accuracy. This section

discusses some of the details that can affect pcapstitch.

3.4.1 Difference of Wire Time and Trace File Record Time

Trace files record a timestamp of all packets. The semantics of this timestamp should be taken to

mean “when the packet was received at the host” However, there is error in the timestamp because

it includes processing delay. This processing delay aggregates as a packet moves from the port

on a device’s NIC, through the kernel, to the userland software stack and finally at the software

that records the timestamp. Processing load on a device running a trace utility can cause variable

processing delay. It is also important to note where the trace utility is getting its timestamp; in

some operating systems it will be from when the kernel receives the packet and in others it will

be when the trace utility received the packet. Depending on the accuracy required, modelling this

processing delay may be necessary.

3.4.2 Assumption of PEF Component Relative Uniqueness

The components used to construct PEFs were chosen because they are relatively good at avoiding

collisions. In the default PEF, the network layer id, network layer offset, and application payload

hash are the components that are most likely to generate a unique signature. When packets have

no application payload the application payload hash will always be the same. Network layer id and

offset provide uniqueness because most operating systems increment one of them on a per-packet

basis. This behavior is not standardized, it is valid to send two subsequent packets with the same

network layer id as long as they are not fragemented. When using pcapstitch a quick check to verify

that PEF components will generate unique values should be done.
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3.4.3 In Transit Modifications of Packets May Impact Accuracy

For a PEF to merge packets accurately there must be some part of the packet readable by the

PEF that does not change in transit. For instance, a router will completely replace a link layer

header and modify some fields at the network layer (e.g., time-to-live, checksum); a PEF that relies

on any of these modified fields will fail to properly stitch. A network device that is engaged in

port/network address translation(PNAT) will change all layers except the transport payload and

thus only a PEF of App (application payload hash) will allow proper stitching. When relying

solely on application payload hashes, understanding frequency of payload repetition is necessary to

avoid PEF collisions. A trace file collected at a device or in a network path that has the potential to

change all specifiable PEF components cannot be stitched. In the current pcapstitch implementation,

packet fragmentation in the network will garuantee that packets cannot be stitched. However if all

observation points see the fragmented packets, stitching will occur normally. In summary, care must

be taken when collecting network trace files to be stitched with regards to whether a PEF will be

able to merge packets.

3.4.4 Kernel Dropped Packets and Loss Accuracy

It is not uncommon for trace utilities to report packets dropped at the kernel. A packet that was

dropped at the kernel, most likely made it to its proper application destination. However, the kernel

did not send this packet to the trace utility. Kernel dropped packets indicate that the kernel is having

difficulty keeping up with network throughput. This can occur because of significant processing load

on the kernel or because the connecting link is very fast in comparison to the hardware the kernel

is running on. A suggestion to avoid kernel droppage due to processor load is to employ dedicated

observations points.

3.4.5 Packets Recorded In Trace File That Are Not Chronologically Or-
dered

Trace files have the potential for receiving packets that are out of order chronologically. Suppose

we have received traffic for a TCP stream, suppose the queue of received data is a duplicate syn

packet and data packet with its push flag set. Both of these packets will have chronologically correct
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timestamps. However, because of the push flag the data packet may be processed by the kernel first

according to implementation details. This would cause tcpdump to write the data packet before

the syn packet in a libpcap file. This behavior impacts efficiency because to properly detect when

packets have moved outside the packet horizon they must be ordered. If packets were always read

from trace files in chronological order, insertion into the stitch list could be accomplished by added

the packet to the end. Because it is possible that packets will not be chronologically ordered in the

trace file, precautions must be taken that require less efficient handling of packets. Specifically when

a packet is going to be added to the stitch list, a check is done to see if the packet is chronologically

out of order (is the packets timestamp earlier than the latest timestamp on the stitch list). If the

packet is in chronological order, it can be added to the end of the stitch list. If the packet is out of

chronological order, it must be inserted in order which involves a search.

3.4.6 Synchronization, Timing, and pcapstitch Accuracy

pcapstitch relies heavily on the ability of observation points to be time synchronized. Relatively

accurate time synchronization can be had through use of common frameworks such as NTPv4. Very

accurate one-way delay measurements may require polling the NTPv4 processes at all obersation

points and recording offset. This information could then be used to adjust raw singleton one-way

delay measurements from pcapstitch.

One-way delay can be defined as:

OneWayDelaymeasured = OneWayDelaytrue + SystemicError + RandomError.

When performing any experiment one must try to account for SystemicError and bound

RandomError.

TCP/IP Offloading

Some modern NICs do additional processing onboard; this is referred to generally as offloading.

Some examples of offloading are, network and transport layer checksum calculation and partial TCP

protocol negotiation. Moving such processing to a NIC can free a CPU from some responsibilities

and reducing traffic on the PCI bus. Some offloading can change packet structure and PEF sensitive
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fields. Large TCP segment send and receive offloading can cause erroneous packet loss. Send

offloading may cause trace files to record a bigger than MTU packets being sent which the NIC will

fragment by creating appropriate TCP headers. Receive offloading behaves similarly with respect

to received packets. When using pcapstitch any NIC offloading should be used with caution.

3.5 Installing pcapstitch

pcapstitch source code can be found at http://patch-tag.com/r/chaosape/pcapstitch. Darcs[65],

a distributed source control program, can be used to retrieve it. Specifically, the darcs command

darcs get http://patch-tag.com/r/chaosape/pcapstitch will retrieve pcapstitch.

pcapstitch was written in the Haskell[46] programming language and is distributed as a cabal

package. The Common Architecture for Building Applications and Libraries (Cabal) is a package

management system for Haskell. The most convenient way to get a working Haskell environment

with Cabal is by downloading The Haskell Platform (http://hackage.haskell.org/platform/).

Upon successfully installing The Haskell Platform, cabal-dev should be installed via the command

cabal install cabal-dev. Cabal-dev provides similar functionality to cabal with the exception

that when libraries are installed they will be sandboxed. This ensure any current cabal repositories

will remain undisturbed.

Once cabal-dev is installed enter the top-level pcapstitch package directory and download a cabal

package database via the command cabal-dev update. pcapstitch dependencies can then be built

via the command cabal-dev install-deps. The command

cabal-dev configure && cabal-dev build && cabal-dev install

will configure, compile, and install pcapstitch. At this point pcapstitch should be installed in

./cabal-dev/bin/ within the top-level pcapstitch package directory. This program is relatively

monolithic and will have no shared library dependencies with any libraries from cabal-dev. Therefore,

moving the binary to other compatible machines should be possible.

pcapstitch has only been tested on Linux variants. If problems are encountered acquiring or

building pcapstitch contact Daniel William DaCosta at chaosape@chaosape.com
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Chapter 4: Conclusion

pcapstitch is a tool that collects singleton one-way delay and loss measurements. These measure-

ments are recovered from trace files collected from multiple observation points in a network. pcap-

stitch use is demonstrated in Section 3.2 where a simple network experiment is performed.

pcapstitch construction is interesting because of it’s use of Haskell, the NHP library, and the

concept of a stitch horizon. Construction of practical, performance sensitive, system tools in Haskell

provides stronger garuantee’s of correctness and weaken’s the position that “system tools require

c”. The NHP library relies on Haskell’s type system extensions to provide a prototype embedded

domain-specific language that can provide provable garuantee’s about byte alignment of network

headers. It demonstrates how dependent types can be used to enforce assumptions between software

components, specifically, that network data is always byte aligned. Finally, and most importantly,

pcapstitch uses the concept of a stitch horizon to manage the practical issues concerned with merg-

ing semantically equivalent packets; conversion of delay to loss, efficiency of packet merging, and

bounding memory.

OpenIMP and pcapstitch are the only tools known to the author that can collect singleton one-

way delay and loss measurements passively. OpenIMP is a robust, professional, comprehensive tool

suite for measuring one-way delay and loss as well as other metrics. OpenIMP’s setup requires probes

and a measurement controller. Acquiring and processing data requires a web server and database.

pcapstitch is a minimal, prototype application built only to measure one-way delay and loss from

libpcap formatted files collected from multiple observations points. It outputs a flat text file that is

easily parsed and analyzed by common UNIX utilities. pcapstitch does one thing well, stores data

in flat text files, and relies on subsequent filter processes. In this way, pcapstitch’s functionality is

useful.

There are many other measurement tools that exists. However, they either require active probing

of the network or must assume network symmetry.
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All network characteristics can be measured with respect to delay. A lost packet, is one whose

delay has exceeded some maximum expected time. pcapstitch’s stitch horizon specifies such a time.

One-way measurements are important because networks are not symmetric. A path used by a packet

to arrive at a destination may not be used by response packets and queues on devices do not fill

symmetrically. Therefore, accurately measuring network characteristics requires one-way delay and

loss measurements.

A network’s utility is derived from application utility. However, networks are imperfect. These

imperfections affect the performance of the protocol stacks used by devices to communicate. Ap-

plication utility is influenced by network characteristics through protocol stacks. The application

specific protocols can be influenced as well. pcapstitch accurately measures network characteristics

and measurement can be done easily with common UNIX utilities. This allows application utility,

protocol stack performance, and, ultimately, network utility degradation to be diagnosed accurately.

Chapter 4: Conclusion



78

Bibliography

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and principles of internet
traffic engineering, 2002.

[2] openimp.

[3] Klaus Krippendorff. Information theory: structural models for qualitative data. Sage, Thousand
Oaks, CA, 1986.

[4] Fui Hoon Nah and Kihyun Kim. Managing Web-enabled technologies in organizations. IGI
Publishing, Hershey, PA, USA, 2000.

[5] Dennis F. Galletta, Raymond M. Henry, Scott McCoy, and Peter Polak. Web site delays: How
tolerant are users? J. AIS, 5(1):0–, 2004.

[6] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[7] Claude Elwood Shannon. A mathematical theory of communication. Bell Systems Technical
Journal, 27:379–423,623–656, 1948.

[8] Xerox. The ethernet: a local area network: data link layer and physical layer specifications.
SIGCOMM Comput. Commun. Rev., 11:20–66, July 1981.

[9] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach. Addison-
Wesley Publishing Company, USA, 5th edition, 2009.

[10] Indra Widjaja Alberto Leon-Garcia. Communicatio Networks: Fundamental Concepts and Key
Architectures, Second edition. McGraw Hill Higher Education, Boston, 2004, ISBN 0-07-119848-
2. Hardcover, pp 900, plus XXVII, 2005.

[11] Rfc 791 internet protocol - darpa inernet programm, protocol specification, September 1981.

[12] S. Deering and R. Hinden. RFC 2460 internet protocol, version 6 (IPv6) specification, December
1998.

[13] Information Sciences Institute. RFC 793, 1981. Edited by Jon Postel. Available at
http://rfc.sunsite.dk/rfc/rfc793.html.

[14] J. Postel. User datagram protocol, August 1980.

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext transfer protocol – http/1.1, 1999.

[16] P. V. Mockapetris. Domain names - implementation and specification, 1987.

[17] P. Chimento and J. Ishac. Defining Network Capacity. RFC 5136 (Informational), February
2008.

[18] Lawrence Berkley Laboratory. tcpdump.

[19] Gerald Combs and many contributors. wireshark.

[20] nmon. ncap.

[21] Sun Microsystems. snoop.



79

[22] Harris Corporation. An/prc-117f(c).

[23] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. Netw., 1:397–413, August 1993.

[24] Srisankar S. Kunniyur and R. Srikant. An adaptive virtual queue (avq) algorithm for active
queue management. IEEE/ACM Trans. Netw., 12:286–299, April 2004.

[25] Internet Engineering Task Force. Ietf.

[26] G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Delay Metric for IPPM. RFC 2679
(Proposed Standard), September 1999.

[27] G. Almes, S. Kalidindi, and M. Zekauskas. A One-way Packet Loss Metric for IPPM. RFC
2680 (Proposed Standard), September 1999.

[28] Eric Steven Raymond, Thyrsus Enterprises, Copyright Eric, and S. Raymond. The art of unix
programming. Addison-Wesley, 2003.

[29] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), September 1981. Updated
by RFCs 950, 4884.

[30] Mike Muuss. Ping.

[31] Van Jacobson. Traceroute.

[32] Shawn Ostermann. tcptrace.

[33] Mark Allman, Wesley M. Eddy, and Shawn Ostermann. Estimating loss rates with tcp. ACM
Performance Evaluation Review, 31:2003, 2003.

[34] NLANR/DAST : Iperf - the TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf/, Accessed 2007.
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Appendix A: Novelty of pcapstitch

A.1 Correspondance with Dr. Vern Paxson

Dr. Vern Paxson is recognized as a world expert in network characterization. In 2008, he was

awarded the Association for Computing Machinery’s Grace Murray Hopper Award for his work

in measuring and characterizing the Internet. In the interest of understanding the uniqueness of

pcapstitch for measurement he was contacted. What follows is our email correspondance.

Email to Dr. Paxson:

Dr. Paxson,

My Name is Dan DaCosta. I am currently working on a tool I call

PcapStitch for my Master’s dissertation. PcapStitch identifies the

same packet from packet captures that have been collected at multiple

points in a network simultaneously. This is done by using header

fields and a packet horizon ( a time based on maximum one-way latency

in the network ). Identification is done after collection has been

completed. I have written this tool in Haskell and it is near

complete.

In my limited network testing experience and background research, I

have found no tool that had this functionality. I know there exist

network testing suites that can provide this functionality assuming

particular payload formats but I have found none that will provide

this functionality for arbitrary TCP/IP packet captures.

As I begin to write my dissertation my anxiety that I will stumble
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upon a tool that accomplishes the same thing grows. I expect that you

are extremely busy, but I would be very appreciative if you could give

me your opinion about the novelty of such a tool (e.g. "Tool x, y and

z all do that", or "Nope, haven’t seen a tool that does that").

Thank you very much for your time!

-d.

Email response from Dr. Paxson:

> PcapStitch identifies the

> same packet from packet captures that have been collected at multiple

> points in a network simultaneously.

I don’t know of any such tool already out there. One person you might ask

would be Nick Duffield <duffield@research.att.com>, who has worked a lot

on "trajectory sampling" whereby copies of the same packet are recorded

at different routers as it travels. He may have run across such a tool

while doing studies for the mechanisms he’s worked on in this regard.

Best wishes,

Vern

A.2 Correspondance with Dr. Nick Duffield

Dr. Nick Duffield is AT&T and IEEE fellow for his work network in measurement, analysis, sampling

and inference. What follows is our email correspondance:

Email to Dr. Duffield:
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My Name is Dan DaCosta. I sent an identical inquiry to Dr. Vern Paxton,

he suggested I contact you with this question. I am currently working on a

tool I call PcapStitch for my Master’s dissertation. PcapStitch identifies the

same packet from packet captures that have been collected at multiple

points in a network simultaneously (Dr. Paxson implied this might

also be referred to as "trajectory sampling"). This is done by using header

fields and a packet horizon ( a time based on maximum one-way latency

in the network ). Identification is done after collection has been completed.

I have written this tool in Haskell and it is near complete.

In my limited network testing experience and background research, I

have found no tool that had this functionality. I know there exist

network testing suites that can provide this functionality assuming

particular payload formats but I have found none that will provide

this functionality for arbitrary TCP/IP packet captures.

As I begin to write my dissertation my anxiety that I will stumble

upon a tool that accomplishes the same thing grows. I expect that you

are extremely busy, but I would be very appreciative if you could give

me your opinion about the novelty of such a tool (e.g. "Tool x, y and

z all do that", or "Nope, haven’t seen a tool that does that").

Thank you very much for your time!

-d.

Email response from Dr. Duffield:

Dan,

Appendix A: Novelty of pcapstitch A.2 Correspondance with Dr. Nick Duffield



84

I don’t know of any such tool.

I’m not sure if trajectory corresponds exactly to what you are doing.

It uses a packet hash (which is generally over payload as well as

header) and time horizon to associate multiple observations of the same

packet. We did some work (see second paper below) on evaluation of

trajectory sampling, but this was more a proof of concept for backend

evaluation of measurements, how to choose timeouts, database issues.

It did not result in a tool for general use.

Also, I suggest that you contact Tanja Zseby

Tanja.Zseby@fokus.fraunhofer.de because she has done work on empirical

evaluation of trajectory sampling for performance measurements and may

possibly have some relevant work in this area.

Here are some of our papers in this area:

(original paper)

Trajectory Sampling for Direct Traffic Observation, N.G. Duffield and

M. Grossglauser, IEEE/ACM Transactions on Networking, v. 9 no. 3 (June 2001)

pp. 280-292. Earlier version appeared in: Proceedings ACM

SIGCOMM’2000, Computer Communications Review, Vol 30, No 4, October

2000, pp. 271--282

http://www2.research.att.com/~duffield/papers/DG-TS-ToN.pdf

(more on backend issues including associating different observations of

Appendix A: Novelty of pcapstitch A.2 Correspondance with Dr. Nick Duffield
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the same packet, timeout issues)

Trajectory Engine: A Backend for Trajectory Sampling, N.G. Duffield,

A. Gerber, M. Grossglauser, IEEE Network Operations and Management

Symposium 2002, Florence, Italy, April 15-19, 2002.

http://www2.research.att.com/~duffield/papers/DGG01-engine.pdf

Please do send me a pointer to anything you do / have done in this area,

Regards,

Nick

This email led me to OpenIMP[2], a more sophisticated and complicate (relative to pcapstitch)

tool that can measure one-way delay and loss passively. It is developed by the Fraunhofer Institute

for Open Communication Systems (FOKUS).
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