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Abstract
In this paper we propose an approach to reasoning about
properties of imperative programs. We assume in this con-
text that the meanings of program constructs are described
using rules in the natural semantics style with the addi-
tional observation that these rules may involve the treatment
of state. Our approach involves modeling natural semantics
style rules within a logic and then reasoning about the be-
havior of particular programs by reasoning about proofs in
that logic. A key aspect of our proposal is to use a frag-
ment of linear logic called Lolli (invented by Hodas and
Miller) to model natural semantics style descriptions. Being
based on linear logic, Lolli can provide logical expressionto
resources such as state. Lolli additionally possesses proof-
theoretic properties that allow it to encode natural semantics
style descriptions in such a way that proofs in Lolli mimic
the structure of derivations based on the natural semantics
rules. We will discuss these properties of Lolli and demon-
strate how they can be exploited in modeling the semantics
of imperative programs and in reasoning about such mod-
els.

1. Introduction
This paper concerns an approach to reasoning about the
properties of imperative programs. Such programs, written
in languages like Java and C, play an important role in
safety- and security critical systems. They are pervasive,for
example, in the software contained in medical devices and
financial systems. Programs that malfunction in such con-
texts can lead to catastrophic system behavior. The underly-
ing motivation for this work is that through the process of
formal reasoning we can establish the absence of such bugs
before these programs are run and thereby preclude undesir-
able behavior after their deployment.

Our objective in this work is not to reason about prop-
erties of particular programs but, rather, to develop a broad
framework within which such reasoning may be conducted.
An important ingredient of such a framework is a logic for
describing the semantics of the programming language in
which programs are constructed; a formalization of the se-
mantics can then be combined with the description of a given

program to model its overall behavior. An aspect that needs
special treatment when dealing with imperative programs in
this setting is the notion of state: imperative programs typi-
cally manipulate memory by storing and looking up values
in relevant cells and how exactly they do this is important to
understanding their behavior. Thus, the logic that we choose
for our framework must facilitate the description as well as
the analysis of the role of state in computations.

In constructing the framework we desire, we must also
choose an approach to presenting the semantics of a pro-
gramming language. We propose in this work to use the nat-
ural semantics style introduced by Kahn [12] for this pur-
pose. Natural semantics style allows the meaning of a pro-
gramming language construct to be modeled via derivations
that closely reflect the actual computations that result from
the construct. Thus, the process of reasoning about program
behavior boils down naturally to reasoning about natural se-
mantics style derivations. In our framework, programming
language semantics will be modeled by translating these nat-
ural semantics descriptions into the underlying logic. This
actually places two further constraints on the logic. First,
it should have a structure that supports a natural encoding
of natural semantics style descriptions. Second, the infer-
ence process in the logic should correspond transparently to
the process of constructing natural semantics style deriva-
tions; this property allows reasoning about natural semantics
style derivations to be reduced uniformly to reasoning about
proofs in the logic.

The main thrust of the work in this paper is to iden-
tify a logic that satisfies the constraints described above
and that would thereby be a suitable choice for encoding
programs and programming language semantics within the
framework we seek to design. We contend that linear logic,
a logic of resources and actions invented by Jean-Yves Gi-
rard [7], provides a natural means for treating state-based
aspects of computation and hence constitutes a good starting
point. However, the logic we use needs also to allow for a
treatment of natural semantics style descriptions. We argue
that Lolli, a fragment of linear logic identified by Hodas and
Miller [9], has such a character. To provide substance to our
claim, we demonstrate how this logic can be used to model
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the semantics of a small collection of constructs in an im-
perative programming language. We further show how the
meta-theoretic properties of Lolli allow us to translate anin-
formal style of reasoning based on natural semantics deriva-
tions into reasoning about derivations in Lolli. Although a
formalization of this reasoning process is beyond the scope
of this work, we believe that this can be done following the
approach used in the Abella system [5].

The rest of this paper is structured as follows. In the next
section, we describe a simple imperative programming lan-
guage and we present the meanings of the constructs in this
language in natural semantics style. We then consider a small
program in this language and show how we can organize the
process of reasoning about it around natural semantics style
derivations. This language and reasoning example provide
us the means for explaining and defending our main contri-
butions in the sections that follow. In Section 3 we present
Lolli and we discuss the properties of derivations in it. In the
following section we show how Lolli can be used to formal-
ize the imperative programming language described earlier.
In Section 5, we demonstrate how the properties of Lolli can
be used in reasoning. In particular, we show that the infor-
mal reasoning process based on the natural semantics style
presentation translates naturally into reasoning about deriva-
tions in Lolli. We conclude the paper in Section 6 with indi-
cations of directions in this work that may be worthwhile to
pursue in the future.

2. A Simple Imperative Programming
Language

In this section we define an imperative programming lan-
guage and its evaluation semantics. We use these definitions
to demonstrate how a program written in the language can
be reasoned about informally.

2.1 The Language

The syntax of programs in our imperative programming lan-
guageL is given by the following rules:

R::= N | R+R | R−R | R > R | ∗R

| R← R | R;R | (R) | while R do R

In this definition, the symbolN represents the category of
expressions corresponding to the non-negative integers and
the programs∗R,R1 ← R2, and R1;R2 correspond to
memory lookup (like inC), update of the value stored atR2

to R1, and evaluation ofR1 followed by evaluation ofR2,
respectively. The last construct included by the syntax rules
permits indefinite iteration in the language.

We will need a model of memory in order to present
the semantics of the constructs in our language. Towards
this end, we will represent memory as a partial function
from natural numbers (denoted also in an overloaded fashion

by N) to expressions in the language that correspond to
natural numbers. Given memoryM , we will use the notation
M [x 7→ y] to denote a modified memory given by the
following partial function:

M [x 7→ y](a) =

{

y if x = a
M(a) if x 6= a

Notice that although memory is modelled as a function from
the conceptual domain of natural numbers, we will often
want to do a “lookup” using the result of a computation. By
an abuse of notation, we will allow memory to be “applied”
to the expressions that denote natural numbers in the lan-
guage.

We present the semantics of the constructs in our lan-
guage by explaining what it means to evaluate them. We do
this by defining an “evaluation relation” that we write as

〈R,M〉 (N,M ′).

This relation is to be read as “the programR evaluated in
memoryM returns valueN and modifies the memory to
M ′” or, when memory is not of interest, “R evaluates to
value N .” When referring to components of this relation
we may refer to the “input program expression”, the “input
memory”, the “return value”, and the “output memory”,
respectively. We define this relation through rules in the
natural semantics style that are presented in Figure 1. For
the uninitiated reader, each of these rules is to be read as
asserting that the relation shown below the line holds if all
the relations or properties above the line hold; the former
is called the conclusion of the rule and the latter are called
its premises. Notice that if a rule has no premises then its
conclusion is unconditionally true.

A few comments are in order with regard to the rules
in Figure 1. First, these rules are meant to be read as
schemata: actual rules are to be generated by instantiating
the schema variablesN,N1, N2, and N3 by (expressions
denoting) numbers inN, R,R1, andR2 by programs inL,
andM,M ′,M ′′, andM ′′′ by memory. Second, in keeping
with the systematic confusion of natural numbers with their
representation inL, we have also overloaded the operators
+, −, >, ≤, and∈. Note also that with− we associate the
usual subtraction operation on natural numbers:N1 −N2 is
0 if N1 is less thanN2. Finally, these rules make precise the
interpretation that we would naturally think of associating
with each of the constructs in the language. In this regard,
the first five rules need no further explanation. The sixth
and seventh rules encode the meaning of memory lookup
and update, respectively:∗R causesR to be evaluated and
the memory to be looked up at the resulting location while
leaving the memory unchanged, whereasR1 ← R2 causes
memory to be changed at the location corresponding toR1

by the value corresponding toR2. Notice also that the right-
most premise of the memory update rule ensures that the do-
main of memory remains fixed throughout evaluation. The



〈N,M〉 (N,M)

〈E1,M〉 (N1,M
′) 〈E2,M

′〉 (N2,M
′′)

〈E1+E2,M〉 (N1 +N2,M
′′)

〈E1,M〉 (N1,M
′) 〈E2,M

′〉 (N2,M
′′)

〈E1−E2,M〉 (N1 −N2,M
′′)

〈E1,M〉 (N1,M
′) 〈E2,M

′〉 (N2,M
′′) N1 > N2

〈E1>E2,M〉 (1,M ′′)

〈E1,M〉 (N1,M
′) 〈E2,M

′〉 (N2,M
′′) N1 ≤ N2

〈E1>E2,M〉 (0,M ′′)

〈R,M〉 (N,M ′) M ′(N) = N ′

〈∗R,M〉 (N ′,M ′)

〈R1,M〉 (N1,M
′) 〈R2,M

′〉 (N2,M
′′) M ′′(N1) = N3

〈R1 ← R2,M〉 (N2,M
′′[N1 7→ N2])

〈R1,M〉 (N1,M
′) 〈R2,M

′〉 (N2,M
′′)

〈R1;R2,M〉 (N2,M
′′)

〈R1,M〉 (0,M ′)

〈while R1 do R2,M〉 (0,M ′)

〈R1,M〉 (N1,M
′) 〈R2,M

′〉 (N2,M
′′) 〈while R1 do R2,M

′′〉 (N3,M
′′′) N1 > 0

〈while R1 do R2,M〉 (N3,M
′′′)

Figure 1. Evaluation semantics for the imperative languageL

last three rules make precise the meaning of sequencing and
of while as an iteration construct.

When building derivations, we may build derivations
for premises in any order provided the constrains between
premises are met. However, we may significantly simplify
the process of proof construction if we build them sequen-
tially from the left most premise to the right most premise.
Observe that adopting such a derivation building strategy
does not limit the derivations that can be built.

2.2 Derivations as Computations

The rules defining the evaluation semantics provide us a
means for constructing derivations of particular evaluation
relations. Such derivations can be understood as an abstract
view of the computation that results from particular pro-
grams. For example, suppose we are given a particular pro-
gramR and a starting memoryM and we desire to under-
stand what value this program computes and what impact
it has on memory. In this case, would pick two “meta vari-
ables”N andM ′ and we attempt to construct a derivation
for the evaluation relation

〈R,M〉 (N,M ′)

with the proviso that we may instantiateN andM ′ as needed
along the way. Note also that the result of a computation
must in fact be validated by success in constructing such a
derivation. Thus, by analyzing all the possible derivations
we also obtain a means for establishing properties of com-
putations.

To illustrate the connection between derivations and com-
putations in this setting, let us consider the program

2← ∗0; (0← ∗1; 1← ∗2)

and its evaluation in some memoryM defined at locations
0, 1, and 2. This program swaps the values stored at two

locations using a third location as temporary storage. We will
build a derivation piecemeal, showing that for someN , the
evaluation relation

〈2← ∗0; (0← ∗1; 1← ∗2),M〉 
(N,M [2 7→M(0)][0 7→M(1)][1 7→M(0)])

holds.
Let X be the following derivation for〈2 ← ∗0,M〉  

(M(0),M ′) whereM ′ = M [2 7→M(0)]:

〈2,M〉 (2,M)

〈0,M〉 (0,M)

〈2← ∗0,M〉 (M(0),M) M(2) = N1

〈2← ∗0,M〉 (M(0),M ′)

Let Ψ be the following derivation for〈0 ← ∗1,M ′〉  
(M ′(1),M ′′) whereM ′′ = M ′[0 7→M ′(1)]:

〈0,M ′〉 (0,M ′)

〈1,M ′〉 (1,M ′)

〈∗1,M ′〉 (M ′(1),M ′) M ′(0) = N2

〈0← ∗1,M ′〉 (M ′(1),M ′′)

Finally, letΩ be the following derivation for〈1← ∗2,M ′′〉 
(M ′′(2),M ′′′) whereM ′′′ = M ′′[1 7→M ′′(2)]:

〈1,M ′′〉 (1,M ′′)

〈2,M ′′〉 (2,M ′′)

〈∗2,M ′′〉 (M ′′(2),M ′′) M ′′(1) = N3

〈1← ∗2,M ′′〉 (M ′′(2),M ′′′)

Then we can combinedX,Ψ andΩ to obtain the complete
derivation that is shown below for the complete program
expression of interest:

X
Ψ Ω

〈0← ∗1; 1← ∗2,M ′〉 (M ′′(2),M ′′)

〈2← ∗0; (0← ∗1; 1← ∗2),M〉 (M ′′(2),M ′′′)

To arrive at the desired conclusion, we have to show that
M ′′′, the memory at the end of the computation, is equiva-
lent to

M [2 7→M(0)][0 7→M(1)][1 7→M(0)].



Substituting the definition ofM ′ in the definition ofM ′′

yields

M [2 7→M(0)][0 7→M [2 7→M(0)](1)].

By observing that

M [2 7→M(0)](1) = M(1)

we have

M ′′ = M [2 7→M(0)][0 7→M(1)].

Replacing this result forM ′′ in the definition ofM ′′′ we get

M [2 7→M(0)][0 7→M(1)][1 7→
M [2 7→M(0)][0 7→M(1)](2)]

Finally, by observing that

M [2 7→M(0)][0 7→M(1)](2) = M(0)

we arrive at the conclusion we want:

M ′′′ = M [2 7→M(0)][0 7→M(1)][1 7→M(0)].

2.3 Informal Reasoning about Imperative Programs

As we have explained earlier, we can extract information
about the behavior of a program by analyzing the deriva-
tions that result from it. We illustrate this possibility inthis
subsection by showing how to demonstrate the correctness
of a program for calculating the sum of the integers from0
to a particular numberN . Our argument at this stage will be
informal; later sections will discuss a framework for formal-
izing this style of argument.

LetU be the following program:

while (∗1)>0 do 0← ∗0+∗1; 1← ∗1−1 (1)

Consider the programV written to calculate the value of
N
∑

i=0

i constructed withU :

0← 0; (1← N ;U) (2)

We will show that given anyN and any memory defined
at 0 and1, V calculates the correct answer and stores it in
memory.

Lemma 1 (Total Correctness ofU using structural opera-
tional semantics). ∀N1, N2,M if N1, N2 ∈ N and M is
memory whereM(0) = N2 and M(1) = N1 then ∃M ′

such that〈U,M〉 (0,M ′) andM ′(0) = N2 +
N
∑

i=0

i

Proof of Lemma 1 .This will be proven by induction onN1.
If N1 = 0 then the following derivation can be constructed

andM ′(0) = N2 = N2 +
0
∑

i=0

i:

〈1,M〉 (1,M)

〈∗1,M〉 (0,M) 〈0,M〉 (0,M) 0 ≤ 0

〈(∗1)>0,M〉 (0,M)

〈while (∗1)>0 do U,M〉 (N,M)

If M(1) = N1 and it is assumed this lemma holds for all
memoryW whereW (1) < N1 then the following derivation
can be constructed:

X 1 > 0 Ψ

Ω

〈while (∗1)>0 do U,M ′′〉 (0,M ′′′)

〈while (∗1)>0 do U,M〉 (0,M ′′′)

In this derivation, we letM ′ = M [0 7→ M(0) + M(1)],
M ′′ = M ′[1 7→ M(1) − 1], andM ′′′ is the result mem-
ory from our inductive hypothesis. LetX be a derivation
with an end-sequent of〈(∗1)>0,M〉  (1,M) andΨ be
a derivation with an end-sequent of〈0 ← ∗0+∗1; 1 ←
∗1−1,M〉  (M(1) − 1,M ′′). Both of these derivations
can be constructed but are omitted; they are uninteresting
with respect to this case. SinceM ′(1) < N1 the inductive
hypothesis can be used to give a derivation forΩ.

From Lemma 1, the following theorem is easily shown:

Theorem 2 (Total Correctness ofV using structural oper-
ational semantics). ∀N,M if N ∈ N and M is memory
defined atM(0) andM(1) then∃M ′ such that〈V,M〉  

(0,M ′) andM ′(0) =
N
∑

i=0

i.

Proof of Theorem 2.By case analysis on the derivation for
〈V,M〉  (0,M ′) it suffices to show there is a derivation
for 〈U, (M [0 7→ 0])[1 7→ N ]〉  (0,M ′) whereM ′(0) =
N
∑

i=0

i. This is shown using Lemma 1.

3. The Specification Logic
In this section we present Lolli, the fragment of linear logic
that we will use to formalize our imperative programming
language. The first subsection introduces the language of
Lolli and clarifies the meaning of its logical symbols through
inference rules. This part of our presentation emphasizes the
declarative nature of Lolli. When we use it to model natural
semantics style descriptions, we would also like to be able to
capture the structure of natural semantics style derivations.
Towards this end, we show in the second subsection the
relative completeness of goal-directed reasoning in Lolli.
This discussion culminates in a reduced proof system for
Lolli that we use exclusively in the rest of the paper.

3.1 The logic Lolli

Lolli is a logic that is built on the simply typedλ-calculus
of Church [4]. The types underlying its language are con-
structed from a collection of primitive types that containo,
the type of propositions, and at least one other type; for the
moment, we assumeι to be the only such type, but we will



add to this collection as needed in later sections. The remain-
ing types build on these primitive types using the function
type constructor: ifτ1 andτ2 are types, thenτ1 → τ2 is also
a type and it denotes the collection of functions fromτ1 to
τ2.

The terms of Lolli are constructed from collections of
typed variables and constants using the usual abstraction and
application operations: the former yields the termλx.t of
type τ1 → τ2 given the termt of type τ2 and the variable
x of typeτ1, and the latter yields the term(t1 t2) of typeτ2
given termst1 andt2 of typesτ1 → τ2 andτ1 respectively.
Abstraction is a binding operation that defines a scope for
the variable, a concept that we will assume the reader to
be familiar with. Two terms are considered to be equal if
one can be obtained from the other by some sequence ofα-
conversions, i.e. the replacement of a subpart of the form
λx.t by λy.t′ providedx and y are variables of the same
type, y does not appear free int and t′ results fromt by
the replacement of the free occurrences ofx by y. Given a
terms of the same type asx, we will write t[s/x] to denote
the result of substitutings for the free occurrences ofx in t
in a capture avoiding way; notice that in correctly carrying
out such a substitution, we may need to apply someα-
conversions. A termt is said to be obtained byβ-contraction
from another terms if it results from replacing a subterm
of s that has the form((λx.t1) t2) by t2[t1/x]. Two terms
are also considered equal if one can be obtained from the
other by some sequence of applications ofβ-contractions
or its inverse. We will use this notion of equality implicitly
in the rest of this paper. In the context of the simply typed
λ-calculus, it is known that every term has a normal form
moduloβ-contractions, i.e. it is equal to a term which does
not contain a subterm of the form((λx.t1) t2). We will
depict terms solely by their normal forms.

Lolli has a set of constants that serve to build a logic over
its terms. These constants, referred to aslogical constants
consist of the following:&,⊸,⇒,⊗, and⊕ all of typeo→
(o → o) and written in infix form;! of typeo → o; and, for
each typeτ , the constants∀τ and∃τ with type(τ → o)→ o.
The constants∀τ and∃τ are referred to as quantifiers and
the remaining constants constitute the logical connectives. In
addition to these constants, expressions in Lolli may also be
formed from user defined constants, referred to asnonlogical
constants. The well-formed terms of typeo in Lolli are
distinguished asformulas. Notice that a formula may have
as its top-level symbol a logical constant, a variable or a
nonlogical constant. In the latter two cases, the formula is
said to beatomic. Further, it is a rigid atom if its top-level
symbol is a nonlogical constant. We shall use the syntactic
variableA to denote atomic formulas andAr to denote rigid
atoms.

At a logical level, Lolli is oriented towards proving judg-
ments represented bysequents. Formally, a sequent is an ob-

ject of the form
Γ;∆ ⊢ G

whereΓ is a set of formulas,∆ is a multiset of formulas
andG is a formula. Intuitively, such a sequent corresponds
to the claim thatG, thegoal formula, is derivable given the
resourcesΓ and∆. The resources inΓ are distinguished as
beingunbounded: formulas inΓ would typically be used to
represent unchanging facts in a specification setting, such
as the natural semantics rules governing the behavior of im-
perative programs. On the other hand, formulas in∆ con-
stituteboundedresources: referring again to the imperative
programming example, they may be used to represent the
state of memory at a particular point in computation.

The syntax of formulas that may be used as resources and
goals is limited in Lolli. Specifically, they may only be the
P andG formulas described by the syntax rules below:

P ::= Ar | P & P | G⊸ P | G⇒ P | ∀x.P

G ::= ⊤ | A | G & G | P ⊸ G | P ⇒ G | ∀x.G

| ∃x.G | !G | G⊗G | G⊕G

(3)

We refer toP formulas also asprogram clause formulas. No-
tice that the connectives&,⊸,⇒, and∀ are allowed in both
kinds of formulas. However, there are differing constraints
in the use of⊸ and⇒. When these are used in the resource
formulas, the formula on the left must be a goal formula and
that on the right must be a resource formula. When they are
used in a goal formula on the other hand, the formula on the
left must be a resource formula and that on the right must
be a goal formula. As we shall see presently, these restric-
tions play an important role in maintaining the structure of
sequents in the course of a derivation and therefore in the
coherence of the inference rules for Lolli. In addition to the
already mentioned connectives, goal formulas may contain
⊤, ∃, !,⊗, and⊕.

The rules for deriving sequents in Lolli are presented in
Figure 2. The sequent that appears below the line in each
of these rules is called its conclusion and the sequents that
appear above the line constitute its premises. TheL or R in
the labels of these rules denotes whether the rule introduces
a logical symbol on the left or the right of the⊢. Grouped
by L or R they may be referred to as left-introduction rules
and right-introduction rules, respectively. In the rules per-
taining to the logical symbols, the formula in the conclu-
sion that contains the introduced symbol is called theprin-
cipal formula. This terminology is extended to theid rule
andabsorb rules to denote the formulas represented byA
andB, respectively. When we writeΓ, F in the unbounded
context in these rules, we mean it to denoteΓ ∪ {F}, i.e.
F may also be contained inΓ. On the other hand, in the
unbounded context∆, F represents∆ ⊎ {F}, i.e. ∆ con-
stitutes the bounded resources with the exclusion of the se-
lected copy of the formulaF . Relatedly,∆1,∆2 in such a
context stands for∆1 ⊎∆2, i.e., the comma represents mul-
tiset union.



id
Γ;A ⊢ A

Γ, B; ∆, B ⊢ G
absorb

Γ, B; ∆ ⊢ G
⊤R

Γ;∆ ⊢ ⊤

Γ;∆, Bi ⊢ G
&L(i ∈ {1, 2})

Γ;∆, B1&B2 ⊢ G

Γ;∆ ⊢ G1 Γ;∆ ⊢ G2
&R

Γ;∆ ⊢ G1&G2

Γ;∆1 ⊢ B1 Γ;∆2, B2 ⊢ G
⊸ L

Γ;∆1,∆2, B1⊸ B2 ⊢ G

Γ;∆, G1 ⊢ G2
⊸ R

Γ;∆ ⊢ G1 ⊸ G2

Γ; ∅ ⊢ B1 Γ;∆, B2 ⊢ G
⇒ L

Γ;∆, B1 ⇒ B2 ⊢ G

Γ, G1; ∆ ⊢ G2
⇒ R

Γ;∆ ⊢ G1 ⇒ G2

Γ;∆, (B t) ⊢ G
∀L

Γ;∆, ∀x.B ⊢ G

Γ;∆ ⊢ Gc
∀R

Γ;∆ ⊢ ∀x.G

Γ;∆ ⊢ (G t)
∃R

Γ;∆ ⊢ ∃x.G

Γ; ∅ ⊢ G
!R

Γ; ∅ ⊢!G

Γ;∆ ⊢ Gi
⊕R(i ∈ {1, 2})

Γ;∆ ⊢ G1 ⊕G2

Γ;∆1 ⊢ G1 Γ;∆2 ⊢ G2
⊗R

Γ;∆1,∆2 ⊢ G1 ⊗G2

Figure 2. The inference rules in Lolli. In the∀R rule,c must not occur inΓ, ∆, orG. In the∀L and∃R rules, the termt
generalized upon must be such that(B t) and(G t) are a program clause formula and a goal formula, respectively.

Some comments on the inference rules are useful both in
understanding the logical structure of Lolli and the intended
meaning of the logical symbols. The rules for the use of re-
source formulas in Lolli are all stated with respect to the
bounded context. The only exception to this is theabsorb
rule which encodes the possibility of making a copy of an
unbounded resource before using it in a bounded fashion.
The rules for the quantifiers give them their usual interpre-
tation with the caveat that the domain of quantification is
restricted so as to preserve the normal form of sequents in
Lolli. The formulaG1⊗G2 is interpreted as saying that there
are enough resources to show bothG1 andG2: the rule for
proving this formula requires each component to be shown
from a partitioning of the bounded resources. The connec-
tives& and⊕ are meant to encode different kinds of choices.
The formulaG1 & G2 signifies that the available resources
are sufficient to satisfy eitherG1 or G2, whichever one we
choose. Accordingly, to prove a sequent that has such a for-
mula on the right of⊢, we have to show that we can prove se-
quents with the same resources and each ofG1 andG2 as the
goal. On the other hand, if the formulaB1 & B2 is available
as a resource, this means that we can choose which one of the
components we actually want to use, something that under-
lies the left-introduction rule for this connective. In contrast,
the formulaG1 ⊕ G2 means that we can have one ofG1

or G2 based on the resources, but we do not knowa priori
which. Correspondingly, to prove a sequent that has such a
formula on the right of⊢, it suffices to prove a sequent with
the same resources and with one ofG1 orG2 as the goal. The
⊸ connective captures a notion of resource conversion: To
showG1 ⊸ G2 we must somehow useG1 in showingG2

and, conversely, when givenB1 ⊸ B2, we may consume
some of the resources to showB1 and then useB2 itself as
a resource. The⇒ connective also represents resource con-
version, but this time an unbounded resource. Note that the
rules for⊸ and⇒ may move formulas from one side of

⊢ to the other and could potentially result in destroying the
form of permitted sequents in Lolli. However, the restriction
on what can appear on either side of⊸ and⇒ in goal and
program clause formulas ensures that this does not happen.
The ! connective corresponds to treating its argument as be-
ing independent of the finite resources. Theid rule cements
the fact that all the bounded resources must be consumed in
a derivation. In this setting⊤ corresponds to a “sink” or a
garbage collector for the bounded resources.

We illustrate the rules of Lolli by considering a few proofs
that use them. First, consider the sequent

∅; ∅ ⊢ (A1 & A2)⇒ (A1 ⊗A2).

This sequent expresses the intuition that if we haveA1 & A2

as an unbounded resource, then we must simultaneously
have bothA1 andA2 provided our bounded resources are
empty. A derivation for the sequent is shown below.

id
A1 & A2;A2 ⊢ A2

id
A1 & A2;A1 ⊢ A1

⊗R
A1 & A2;A1, A2 ⊢ A1 ⊗ A2

&L
A1 & A2;A1, A1 & A2 ⊢ A1 ⊗A2

&L
A1 & A2;A1 & A2, A1 & A2 ⊢ A1 ⊗A2

absorb
A1 & A2;A1 & A2 ⊢ A1 ⊗A2

absorb
A1 & A2; ∅ ⊢ A1 ⊗A2

⇒ R
∅; ∅ ⊢ (A1 & A2)⇒ (A1 ⊗A2)

This proof uses the&L andabsorb rules in a situation when
the formula on the right⊢ isA1⊗A2, i.e., is not atomic. Such
a proof is not goal-directed, i.e., if we think of the processof
searching for a proof for the given sequent, the formula on
the right of the⊢ symbol does not guide the choice of rule
to use to arrive at the conclusion. In the next subsection we
will consider the idea of uniform proofs that will provide us
a means for restricting attention to only goal-directed proofs.

Notice that the unbounded availability ofA1 & A2 is
important to the above proof: if we change the sequent to

∅; ∅ ⊢ (A1 & A2)⊸ (A1 ⊗A2)



then it is no longer provable. Given the formulaA1 & A2

as a bounded resource, we have to make a choice between
using withA1 orA2, also as a bounded resource. This choice
is mutually exclusive; we may not have bothA1 andA2. On
the other hand, ifA1 ⊗ A2 is on the right of⊢, then both
A1 andA2 must be available as (bounded) resources for the
sequent to be provable.

The process of finding proofs for sequents typically in-
volves search. Two common strategies that are used in this
setting areforward chainingandbackward chaining. These
strategies refer to how we use implicational formulas, which
in Lolli could be ones that have either⊸ or⇒ as their top-
level connective, available in resources in guiding the search.
In the former case, we use the fact that the lefthand side of
the implication is already available as a resource and we then
reason forward, by adding the righthand side as a resource.
In the latter case, we observe that the goal formula of the
sequent matches the righthand side of the implication and
then reduce the task to showing the lefthand side from the
available resources. The following proof can be understood
as the result of using a forward chaining strategy to prove
the sequentA1;A1 ⊸ A2, A2 ⊸ A3 ⊢ A3.

id
A1;A1 ⊢ A1

absorb
A1; ∅ ⊢ A1

id
A1;A2 ⊢ A2

id
A1;A3 ⊢ A3

⊸ L
A1;A2, A2⊸ A3 ⊢ A3

⊸ L
A1;A1⊸ A2, A2 ⊸ A3 ⊢ A3

In Section 3.2, we will consider a different proof resulting
from a backward chaining strategy for this sequent.

3.2 A Reduced Proof System for Lolli

The derivation system for Lolli that we saw in the previous
subsection presents us with alternative ways to construct a
proof. For example, we may have the choice of using ei-
ther a left or a right rule at a particular point in proof. In
modelling natural semantics style rules for imperative pro-
gramming languages, we will want to use sequents in a spe-
cific way: the unbounded context will encode the semantics
of programming constructs, the bounded context will model
the state and the goal formula will represent the program
producing the computation. If we are to analyze the prop-
erties of programs using this setup, it would be ideal if we
could focus our attention on Lolli proofs that closely fol-
low program behavior. We show here that this is possible.
In particular, we demonstrate that, from a provability per-
spective, it suffices to look at proofs that are goal-directed in
that, when looking at derivations bottom up, the first step is
always to simplify a complex goal formula.

The following definition, first introduced by Milleret
al[16], provides an encapsulation of the idea of goal-directedness
in the context of Lolli proofs. It was or

Definition 3 (Uniform Proof). A uniform proof is a Lolli
proof in which every sequent with a non-atomic goal formula
on the right of⊢ is the conclusion of an inference rule that
introduces the top-level logical symbol of that formula.

Towards understanding uniform provability, consider the
proof shown in Section 3.1 for the sequent

∅; ∅ ⊢ (A1 & A2)⇒ (A1 ⊗A2).

That proof is not a uniform proof. In that proof, there are two
absorb rules and two&L rules that have as a conclusion a
sequent in which the goal formulaA1 ⊗ A2 appears as the
right of ⊢. However, the same sequent does have a uniform
proof that is shown below:

id
A1 & A2;A1 ⊢ A1

&L
A1 & A2;A1 & A2 ⊢ A1

absorb
A1 & A2; ∅ ⊢ A1

id
A1 & A2;A2 ⊢ A2

&L
A1 & A2;A1 & A2 ⊢ A2

absorb
A1 & A2; ∅ ⊢ A2

⊗R
A1 & A2; ∅ ⊢ A1 ⊗A2

⇒ R
∅; ∅ ⊢ (A1 & A2)⇒ (A1 ⊗A2)

In fact, every provable Lolli sequent has a uniform proof as
we now show.

Theorem 4 (Lolli Admits Uniform Provability). The se-
quentΓ;∆ ⊢ G has a proof in Lolli if and only if it has
a uniform proof.

Proof. The “if” direction is obvious. For the “only if” di-
rection, we consider a proof that is not uniform and show
how to transform it into a uniform proof. We associate with
a proof a non-uniformity measure that counts the number of
inference rule occurrences that do not act on a complex goal
formula that appears to the right of⊢ in their conclusion. If
this measure is non-zero, we show how to reduce it by 1. The
conclusion then follows by induction on the measure.

If a proof has a non-zero non-uniformity measure, then
there must be a path in it in which there is a first occurrence
of a left rule that has a complex goal formula to the right of
⊢ in its conclusion. We show how to reduce the height of
this path by 1. By induction on this height it follows that we
can eliminate this violation of uniformity and thereby reduce
the non-uniformity measure of the proof. Observe that since
the rule in question is the first one along the path to violate
the uniformity property, it must be preceded in the proof by
a right rule. We use this fact in our argument. In particular,
we consider the possible cases for the right and left rules and
show that the left rule can be permuted above the right one,
thereby moving the violation of non-uniformity closer to a
leaf.

In a detailed consideration of the cases, it is useful to cat-
egorize rules based on the number of premises they have.
Category I will represent rules with one premise and cate-
gory II will represent rules with two premises.

Suppose that the case in question involves two inference
rules from category I. An example of such a situation is the
following:

Ξ
Γ;∆, Bi, G1 ⊢ G2

⊸ R
Γ;∆, Bi ⊢ G1 ⊸ G2

&L(i ∈ {1, 2})
Γ;∆, B1 & B2 ⊢ G1 ⊸ G2



This proof can be rearranged as follows:

Ξ
Γ;∆, Bi, G1 ⊢ G2

&L(i ∈ {1, 2})
Γ;∆, B1 & B2, G1 ⊢ G2

⊸ R
Γ;∆, B1 & B2 ⊢ G1⊸ G2

By permuting the left rule above the right one, we have
reduced the length of the path by 1 as required. A similar
argument applies to all the other cases of rules in these two
respective categories.

Suppose that the case in question involves a right infer-
ence rule from category I and a left inference rule from cate-
gory II. An example of this kind is presented by the follow-
ing derivation:

Ψ
Γ;∆1 ⊢ B1

Ξ
Γ;∆2, B2 ⊢ Gi

⊕R(i ∈ {1, 2})
Γ;∆2, B2 ⊢ G1 ⊕G2

⊸ L
Γ;∆1,∆2, B1 ⊸ B2 ⊢ G1 ⊕G2

In this case the derivation can be rearranged as follows to
once again reduce the length of the path by 1:

Ψ
Γ;∆1 ⊢ B1

Ξ
Γ;∆2, B2 ⊢ Gi

⊸ L
Γ;∆1,∆2, B1⊸ B2,⊢ Gi

⊕R(i ∈ {1, 2})
Γ;∆1,∆2, B1⊸ B2 ⊢ G1 ⊕G2

The other cases for rules from the categories under consid-
eration are similar.

Suppose the case in question involves a right inference
rule from category II and a left inference rule instance from
category I. An example of this kind is the following:

Ψ
Γ;∆1, Bi ⊢ G1

Ξ
Γ;∆2 ⊢ G2

⊗R
Γ;∆1,∆2, Bi ⊢ G1 ⊗G2

&L(i ∈ {1, 2})
Γ;∆1,∆2, B1 & B2 ⊢ G1 ⊗G2

Here again, we can permute the left inference rule above the
right one as follows:

Ψ
Γ;∆1, Bi ⊢ G1

&L
Γ;∆1,∆2, B1 & B2 ⊢ G1 ⊗G2

Ξ
Γ;∆2 ⊢ G2

⊗R
Γ;∆1,∆2, B1 & B2 ⊢ G1 ⊗G2

The other cases under this combination are treated similarly.
Finally, suppose that the situation under consideration

involves a right and left inference rule both from category
II. An example of this kind is the following:

Ψ
Γ;∆1 ⊢ B1

Ξ
Γ;∆2, B2 ⊢ G1

Θ
Γ;∆3 ⊢ G2

⊗R
Γ;∆2,∆3, B2 ⊢ G1 ⊗G2

⊸ L
Γ;∆1,∆2,∆3, B1⊸ B2 ⊢ G1 ⊗G2

Here we rearrange the derivation as follows, again obviously
reducing the length of the path to the errant left rule by one.

Ψ
Γ;∆1 ⊢ B1

Ξ
Γ;∆2, B2 ⊢ G1

⊸ L
Γ;∆1,∆2, B1⊸ B2 ⊢ G1

Θ
Γ;∆3 ⊢ G2

⊗L
Γ;∆1,∆2,∆3, B1 ⊸ B2 ⊢ G1 ⊗G2

The other cases for the rules in the category under consider-
ation are treated similarly.

We are thinking of modeling natural semantics style in-
ference rules using the⊸ connective: modeled natural se-
mantics rule conclusion relations will occur to the right,
also known as thehead, of a⊸ and modeled premise re-
lations will occur to left, also known as thebody, of a⊸.
When modeled this way,⊸ L application on formulas with
heads matching atomic goals mimics natural semantics style
derivation construction. A backward chaining proof search
strategy is one where this process is repeated for proof con-
struction.

The following definition captures the structure of proofs
built using a backward chaining proof search strategy.

Definition 5 (Simple Proof). A uniform proof is simple
if every left introduction inference rule instance acts on a
marked formula. A unique formula in the bounded context
is marked if it is the principal formula of anid instance or if:

• P1 or P2 are marked in the premises sequent of a&L
instance then the formulaP1 & P2 is marked in the
conclusion sequent.

• P [t/x] is marked in the premise sequent of a∀L instance
then the formula∀x.P is marked in the conclusion se-
quent.

• P is marked in the right-hand premise sequent of a⊸ L
instance then formulaG ⊸ P is marked in the conclu-
sion sequent.

• P is marked in the right-hand premise sequent of a⇒ L
instance then formulaG ⇒ P is marked in the conclu-
sion sequent.

The second proof from Section 3.1 is an example of a
proof that is not simple. This can be illustrated by attempting
to mark the proof according Definition 5. In the following
proof, the dots indicate formulas which can be marked.

id
A1; Ȧ1 ⊢ A1

absorb
A1; ∅ ⊢ A1

id
A1; Ȧ2 ⊢ A2

id
A1; Ȧ3 ⊢ A3

⊸ L
A1;A2, ˙A2 ⊸ A3 ⊢ A3

⊸ L
A1;A1⊸ A2, A2⊸ A3 ⊢ A3

Consider the bottom most⊸ L instance principal for-
mula A1 ⊸ A2, call this instance one. According to the
marking strategy, for this formula to be markedA2 must be
marked at the root of the right-hand premise sub-proof of in-
stance one. Consequently, instance one acts on a unmarked
formula.

The following proof is a simple proof for the same se-
quent. Observe that every principal formula of a left intro-
duction rule is marked.



id
A1; Ȧ1 ⊢ A1

Absorb
A1; ∅ ⊢ A1

id
A1; Ȧ2 ⊢ A2

⊸ L
A1; ˙A1 ⊸ A2 ⊢ A2

id
A1; Ȧ3 ⊢ A3

⊸ L
A1;A1⊸ A2, ˙A2 ⊸ A3 ⊢ A3

We now show that every provable sequent in Lolli has a
simple proof.

Theorem 6 (The Original Specification Logic Admits Sim-
ple Provability). The sequentΓ;∆ ⊢ G has a uniform proof
in Lolli if and only if it has a simple proof in Lolli.

Proof. This proof is similar to the proof given in Theorem 4.
The “if” direction is obvious and in the “only if” direction,
we associate with a proof a non-simple measure that counts
the number of unmarked principal formulas occurring to the
left of a ⊢. If this measure is non-zero, we show how to
reduce it by 1. The conclusion then follows by induction on
the measure.

Observe that if a non-simple instance occurs below an
absorb instance a permutation is immediate. Therefore, we
restrict analysis to non-simple instances below instancesthat
are notabsorb.

Suppose the non-simple instance is a& or∀ left introduc-
tion instance. Observe, that the rule above this non-simple
instance must be a left introduction instance;A is atomic so
no right introduction rules apply. If the rule is below a∀ or
& left introduction instance permutation of these instances
is immediate. If the rule above is a left introduction instance
of⊸ a straightforward permutation is possible. We consider
one such case in detail whereΨ andΞ are simple proofs.

Ψ
Γ;∆1, Pi ⊢ B1

Ξ
Γ;∆2, P2 ⊢ A

⊸ L
Γ;∆1,∆2, P1⊸ P2, Pi ⊢ A

&L(i ∈ {3, 4})
Γ;∆1,∆2, P1 ⊸ P2, P3 & P4 ⊢ A

This non-simple uniform proof may be permuted to one with
the following form:

Ψ
Γ;∆1, Pi ⊢ P1

&L
Γ;∆1, P3 & P4 ⊢ P1

Ξ
Γ;∆2, P2 ⊢ A

⊸ L
Γ;∆1,∆2, P1⊸ P2, P3 & P4 ⊢ A

When the non-simple instance is a∀ left introduction in-
stance or the instance above is a⇒ the permutations differ
only slightly.

Suppose the non-simple instance is a⊸ or⇒ left intro-
duction instance. Observe, that the right premise must be-
gin with a left introduction instance;A is atomic so no right
introduction rules apply. Furthermore, observe that the left
premise is irrelevant with respect to marking. We consider
one case in detail whereΨ andΞ are simple proofs.

X
Γ;∆3 ⊢ P3

Ψ
Γ;∆1, P4 ⊢ P1

Ξ
Γ;∆2, P2 ⊢ A

⊸ L
Γ;∆1,∆2, P1⊸ P2, P4 ⊢ A

⊸ L
Γ;∆1,∆2,∆3, P1 ⊸ P2, P3⊸ P4 ⊢ A

This non-simple uniform proof may be permuted to one with
the following form:

X
Γ;∆3 ⊢ P3

Ψ
Γ;∆1, P4 ⊢ P1

⊸ L
Γ;∆1,∆3, P3⊸ P4 ⊢ P1

Ξ
Γ;∆2, P2 ⊢ A

⊸ L
Γ;∆1,∆2,∆3, P1⊸ P2, P3 ⊸ P4 ⊢ A

The remaining permutations involving non-simple⊸ and
⇒ left introduction instances and follow this permutation
closely.

Instances ofabsorb may appear anywhere prior to the use
of its principal formula. Without further meta-theoretical re-
sults, natural semantics style derivation mimicry in Lolliwill
be moduloabsorb instance placement. The following defini-
tion prescribes an exact placement for allabsorb instance.

Definition 7 (Coincided Proof). A coincided proof is a
simple proof where everyabsorb rule instance unbounded
premise formula corresponding to the principal formula is
the principal formula of a left introduction or identity rule
instance directly above it.

The first proof in this section is not a coincided one
because anabsorb instance is detached where the proof
in Subsection 3.2 is a coincided one because allabsorb
instances satisfy Definition 7.

Theorem 8 (Lolli Admits Conincided Provability). The se-
quentΓ;∆ ⊢ G has a simple proof in Lolli if and only if it
has a conincided proof in Lolli.

Proof. This proof is similar to the previous ones. Observe
that all coincided proofs are simple ones, this satisfies the
“if” direction. Now consider the “only if” direction. It is easy
to see thatabsorb instances may be permuted up until they
coincide with a left introduction or identity rule instance.
From this, we may conclude the argument by induction on
the measure of non-coincidedabsorb rule instances.

Theorems 4, 6, and 8 can be used to yield a reduced
proof system that admits only coincided proofs. To do so
we first inductively define a unary predicate||P || whereP is
a program clause formula that captures a backward chaining
proof search strategy. The predicate takes a program clause
formula as an argument and returns a set of triples where the
first, second, and third projection is a set of goal formulas,
a multiset of goal formulas, and a program clause formula,
respectively. Each triple represents unbounded(the first pro-
jection) and bounded(the second projection) proof obliga-
tions for some program clause formula. An unbounded proof
obligation is one that must be provided strictly from the un-
bounded context and a bounded proof obligation is one that
must be proved from some portion of the bounded context.
Let ||P || be the smallest set such that:

1. 〈∅, ∅, A〉 ∈ ||A||



2. if 〈Γ,∆, P1 & P2〉 ∈ ||P || then both〈Γ,∆, P1〉 ∈ ||P ||
and〈Γ,∆, P2〉 ∈ ||P ||

3. if 〈Γ,∆, ∀x.P 〉 ∈ ||P || then, for all closed termst,
〈Γ,∆, P [t/x]〉 ∈ ||P ||

4. if 〈Γ,∆, P1 ⇒ P2〉 ∈ ||P || then〈Γ ∪ P1,∆, P2〉 ∈ ||P ||

5. if 〈Γ,∆, P1 ⊸ P2〉 ∈ ||P || then〈Γ,∆ ⊎ P1, P2〉 ∈ ||P ||

Let our specification logic have all right introduction
rules from Figure 2 and the back chaining rules given in
Figure 3.

There are two forms of backward chaining in this figure
both having as their principal formulaB. Intuitively, an
instance of both could replace a series of left introduction
instances in a coincided proof. Using the former requires that
the left introduction series begin (in a bottom-up reading)
with anabsorb instance.

Theorem 9 (The Specification Logic and Lolli Equiva-
lence). The sequentΓ;∆ ⊢ G has a proof in Lolli if and
only if it has a proof in the specification logic.

Proof. In the “if” direction, due to the definition of the back-
ward chaining rules, any back chaining instance in the spec-
ification logic proof can be replace by some sequence of left
introduction andabsorb instances from Lolli.

Now, consider the “only if” direction. Application of
Theorems 4 followed by 6 and finally 8 allows us to con-
vert a Lolli proof to a coincided proof. Finally, by Defini-
tion 5 and the definition of||P ||, we may replace runs of
left-introduction andabsorb instances by one of the two in-
stances of backward chaining.

4. Modeling Imperative Programming
Languages

In this section, the imperative programming language de-
fined in Section 2 is modeled using the specification logic
presented in Section 3. Additionally, proof mimicry of
derivations is demonstrated by considering the proof of a
modeled evaluation relation and that evaluation relations
derivation. Throughout this section and the rest of this pa-
per, we refer to the imperative programming language and
its evaluation semantics as the “object system”.

4.1 The Model

Our model extends the kinds of types we may have. Types
in our model will now include a type for programs in the
model,R and for syntax representing natural numbers,N

(again, overloaded for use in the specification logic).

Let tR be a function that translates programs fromL given
in Section 2 into terms of typeR in the specification logic.

tR(i) =


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
















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





i if i ∈ N

(add tR(j) tR(k)) if i = j+k
(sub tR(j) tR(k)) if i = j−k
(gt tR(j) tR(k)) if i = j>k
(get tR(j)) if i = ∗j
(set tR(j) tR(k)) if i = j ← k
(seq tR(j) tR(k)) if i = j; k
(wh tR(j) tR(k)) if i = while j dok

(4)

Observe that any function can be represented as set of
tuples relating inputs to outputs. Such representations are
often referred to as function graphs. Lettm be a recursive
function that translates memory function graphs to multisets
composed exclusively of occurrences of the binary predicate
m with the typeN → N → o. The first argument to
m represents a memory location and the second argument
represents the value stored at that location.

tm(M) =

{

∅ if M = ∅
(m l v) ⊎ tm(M ′) if M = (l, v) ∪M ′

(5)
The ternary evaluation predicatee is defined in Figure 4

and has the typeR → N → o → o. This definition mod-
els the natural semantics rules given in Figure 1. Its first ar-
gument is the program expression to be evaluated, its sec-
ond argument is an element fromN representing the return
value of the input program, and its third argument is a for-
mula that must be proved in the memory left behind after
the program expression has been evaluated. In this defini-
tion, explicit quantification has been removed for clarity.All
capitalized terms occurring in the head of a program clause
formula are universally quantified variables. All capitalized
terms occurring exclusively in the body of a program clause
formula are existentially quantified variables.

The e predicate relies heavily on a continuation-passing
style[19] where the universally quantified variableC with
type o is a continuation. The use of continuations allows
a natural way to express the subsequent evaluation of pro-
gram expression in potentially modified memory. For exam-
ple, consider the program clause formula in Figure 4 model-
ing sequencing in the object system. As noted at the end of
Subsection 2.1, one method for building a derivation would
be by building derivations for the premises in a left-to-right
order. We capture this method in this formula: the first pro-
gram expression should be evaluated and this may result in
modified memory, the second program expression should be
modeled for evaluation in this modified memory. Therefore,
we extend the continuation with an evaluation predicate for
the second program expression.

For each natural semantics style rule given in section
2.1 there is a corresponding formula in Figure 4. A simple
heuristic was followed to model each rule: modeled premises
of a rule “extend” the continuation, becoming the body of a



Γ; ∅ ⊢ B1 . . . Γ; ∅ ⊢ Bn Γ;∆1 ⊢ C1 . . . Γ;∆m ⊢ Cm
BCu

Γ, B; ∆1, . . . ,∆m ⊢ A

Γ; ∅ ⊢ B1 . . . Γ; ∅ ⊢ Bn Γ;∆1 ⊢ C1 . . . Γ;∆m ⊢ Cm
BCb

Γ;∆1, . . . ,∆m, B ⊢ A

Figure 3. In the specification logic, these back chaining rules will replaces all left-introduction rules from Figure 2. Both
have the proviso thatn,m ≥ 0 and〈{B1, . . . , Bn}, {C1, . . . , Cm}, A〉 ∈ ||B||

program clause formula. Continuation extension is done in
left-to-right premise order. Finally, the conclusion of the rule
will become the head of a program clause formula.

As we did in Section 2, we will overloaded the operators
+, −, >, and≤. Again, we associate the usual subtraction
operation on natural numbers:N1−N2 is 0 if N1 is less than
N2.

Let Γ be a set exclusively containing the formulas from
Figure 4. The evaluation relation〈E,M〉  (N,M ′) de-
fined in Section 2.1 is translated to the sequent:

Γ; tm(M) ⊢ (e tR(E) N ⊤) (6)

The use of⊤ here “throws away” the memory resulting from
this evaluation, i.e what isM ′ in the evaluation relation. If
inspection of this memory is necessary, we may replace⊤
with a goal formula. For example, if we wanted to inspect
the value in memory stored at location1 we could use the
following sequent:

Γ; tm(M) ⊢ (e tR(E) N1 ((m 1 N2)⊗⊤)).

In our model of the object system, memory is accessed
and modified using the subformula

(m N1 N2)⊗ ((m N1 N3)⊸ C)

whereN1, N2, andN3 have the typeN. WhenN2 = N3

the operation is a lookup, otherwise it is an update. IfM
is memory undefined atN1 then a proof of this subformula
must have the following structure due to the meta-theoretical
results from Subsection 3.2 and our model.

id
Γ; (m N1 N2) ⊢ (m N1 N2)

...
Γ; tm(M), (m N1 N3) ⊢ C

⊸ R
Γ; tm(M) ⊢ (m N1 N3)⊸ C

⊗R
Γ; tm(M), (m N1 N2) ⊢ (m N1 N2)⊗ ((m N1 N3)⊸ C)

Therefore, our treatment of state in our specification logic
has an intuitive and logical reading of “remove the valueN2

at locationN1 and replace it with the valueN3”.

4.2 Proofs as Computations

Consider theΩ derivation given in Subsection 2.2 for the
relation

〈1← ∗2,M ′′〉 (M ′′(2),M ′′′)

where
M ′′ = M [2 7→M(0)][0 7→M(1)]

andM is memory defined at0, 1 and2. The sequent corre-
sponding to this evaluation relation is

Γ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢
(e (1← ∗2) M ′′(0) ⊤)

whereO is memory and for alln ∈ N if n > 3 then
O(n) = M(n), otherwiseO(n) is undefined. A proof of
this sequent can be found in Figure 5. In this proof right
introduction rules are omitted.

A mimicry of the derivation can be seen in this proof:
for every rule instance that occurs in the derivation there
is a correspondingBCu instance with a principal program
clause formula1 that models that derivation rule instance.

5. Reasoning about Properties of Imperative
Programs Using the Model

In this section, we show that our model of the object system
can be used to prove a similar property to what was shown
in Subsection 2.3. As it was in Subsection 2.3, the prop-
erty proven is trivial. However, the goal of this exercise isto
demonstrate that the structure of the argument on the model
follows very closely the structure of the argument from Sub-
section 2.3. In this sense, reasoning about properties of our
model can be intuitive. This advantage when reasoning is a
result of the mimicry exposed in Subsection 4.2.

5.1 Correctness as a Property of Proofs in the Model

We must model the Lemma 1 and Theorem 2 in the specifi-
cation logic. The modeled lemma and theorem rely on the
sum program from Equation 2, the term translation func-
tion from Equation 4, the memory translation function from
Equation 5, the evaluation predicatee from Figure 4, and ,
tacitly, the relationship translation function from Equation 6.
As defined in Subsection 4.1, the setΓ is exclusively inhab-
ited by formulas from Figure 4.

Lemma 10 encodes Lemma 1 from Subsection 2.3 in the
specification logic.

Lemma 10 (Total Correctness oftR(Q)). ∀N1, N2,M,M0

if N1, N2 ∈ N andM = M0[0 7→ N2][1 7→ N1] then∃N3,
N3 ∈ N andΓ; tm(M) ⊢ (e tR(Q) 0 (m 0 N3) ⊗ ⊤) and

N3 = N2 +
N1
∑

i=0

i

The value of a memory location was extracted by func-
tion application in the object system. In the encoding we re-
trieve the value from memory after program evaluation via a



C ⊸ (e N N C)
(e E1 N1 (e E2 N2 (N3 = N1 +N2 ⊗ C))) ⊸ (e (add E1 E2) N3 C)
(e E1 N1 (e E2 N2 (N3 = N1 −N2 ⊗ C))) ⊸ (e (sub E1 E2) N3 C)
(e E1 N1 (e E2 N2 (N1 > N2 ⊗ C))) ⊸ (e (gt E1 E2) sz C)
(e E1 N1 (e E2 N2 (N1 ≤ N2 ⊗ C))) ⊸ (e (gt E1 E2) z C)
(e E N1 ((m N1 N2)⊗ ((m N1 N2)⊸ C))) ⊸ (e (get E) N2 C)
(e E1 N1 (e E2 N2 ((m N1 N3)⊗ ((m N1 N2)⊸ C)))) ⊸ (e (set E1 E2) N2 C)
(e E1 N1 (e E2 N2 C)) ⊸ (e (seq E1 E2) N2 C)
(e E1 N1 (e E2 N2 (e (wh E1 E2) C )))⊗N1 > z ⊸ (e (wh E1 E2) z C)
(e E1 N1 C)⊗N1 = z ⊸ (e (wh E1 E2) z C)

Figure 4. The program clause formulas modeling the evaluation semantics given in section 2.1 in the specification logic.

⊤R
...

Γ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢ ((m 2 M(0))⊗ (m 2 M(0)))⊸ ((m 1 M(1))⊗ ((m 1 M(0))⊸ ⊤))
BCU

Γ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢ (e 2 2 ((m 2 M(0))⊗ ((m 2 M(0))⊸ ((m 1 M(1))⊗ ((m 1 M(0))⊸ ⊤)))))
BCU

Γ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢ (e (get 2) M(0) ((m 1 M(1))⊗ ((m 1 M(0))⊸ ⊤)))
BCU

Γ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢ (e 1 1 (e (get 2) M(0) ((m 1 M(1))⊗ ((m 1 M(0))⊸ ⊤))))
BCU

Γ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢ (e (set 1 (get 2)) M(0) ⊤)

Figure 5. A proof of the sequentΓ; (m 0 M(1)), (m 1 M(1)), (m 2 M(0)), tm(O) ⊢ (e (1← ∗2) M ′′(0) ⊤).

continuation formula. Specifically, in Lemma 10 that contin-
uation formula is(m 0 N3)⊗⊤. This formula extracts only
the value in memory at location0. This is where we expect
the result of programQ to be stored.

The encoding of Theorem 2 is similar. Observe thatN1

andN2 are immediately initialized upon evaluation ofP ;
this use ofN1 andN2 is only meant to ensure that memory
M is defined at locations0 and1.

Theorem 11(Total Correctness oftR(P )). ∀N1, N2,M,M0

if N1, N2 ∈ N andM = M0[0 7→ N2][1 7→ N1] then∃N3,
N3 ∈ N andΓ; tm(M) ⊢ (e tR(P ) 0 (m 0 N3) ⊗ ⊤) and

N3 =
N
∑

i=0

i

5.2 Reasoning about Proofs

Reasoning about the model is structured according to the
reasoning structure in Subsection 2.3.

Proof of Lemma 10.This will be shown by induction onN1.
In the first case whereN1 = 0, the proof in Figure 6 can be
constructed and we can conclude thatN3 = N2. Therefore,

we have thatN3 = N2 +
N1
∑

i=0

i.

In the second case we assume that Lemma 10 holds if
M(1) < N1 and must show this lemma holds whenM(1) =

N1; this is our inductive hypothesis. Proof analysis of the
sequent

Γ; tm(M ′), (m 1 M(1)), (m 0 M(0)) ⊢
(e tR(Q) 0 ((m 0 N3))

reveals that it suffices to build a proof for the sequent

Γ; (m 1 (M(1)− 1)), (m 0 (M(0) +M(1))), tm(M ′)
⊢ (e tR(Q) 0 ((m 0 N3)⊗⊤)).

We omit such a proof in our discussion here; it mimics the
derivation for the second case given in Subsection 2.3, it is
tedious, and, its construction is completely mechanizablein
our specification logic. The inductive hypothesis yields this
sequent. Additionally, by the inductive hypothesis, we have

N4 = (M(0)+M(1))+
M(1)−1
∑

i=0

i for someN4 ∈ N. This is

equivalent toN4 = M(0) +
M(1)
∑

i=0

i and thus,N3 = N4.

Proof of Theorem 11.We must prove

Γ; tm(M) ⊢ (e tR(P ) 0 (m 0 N3)⊗⊤)

andN3 =
N
∑

i=0

i. Proof analysis of this sequent reveals it is

sufficient to prove the sequent

Γ; tm(M ′), (m 1 N), (m 0 0) ⊢ (e tR(Q) 0 ((m 0 N3)⊗⊤))



BCb
Γ; (m 1 0) ⊢ (m 1 0)

≤
Γ;⊢ 0 ≤ 0

6=
Γ;⊢ (0 <> 1)

BCb
Γ; (m 0 N2) ⊢ (m 0 N2)

⊤R
Γ; (m 1 0), tm(M ′) ⊢ ⊤

⊕R
Γ; (m 1 0), tm(M ′), (m 0 N2) ⊢ ((m 0 N2)⊗⊤)

⊕R
Γ; (m 1 0), tm(M ′), (m 0 N2) ⊢ ((0 <> 1)⊗ ((m 0 N2)⊗⊤))

⊕R
Γ; (m 1 0), tm(M ′), (m 0 N2) ⊢ (0 ≤ 0⊗ ((0 <> 1)⊗ ((m 0 N2)⊗⊤)))

BCu
Γ; (m 1 0), tm(M ′), (m 0 N2) ⊢ (e 0 0 (0 ≤ 0⊗ ((0 <> 1)⊗ ((m 0 N2)⊗⊤))))

⊸ R
Γ; tm(M ′), (m 0 N2) ⊢ ((m 1 0)⊸ (e 0 0 (0 ≤ 0⊗ ((0 <> 1)⊗ ((m 0 N2)⊗⊤)))))

⊕R
Γ; tm(M ′), (m 1 0), (m 0 N2) ⊢ ((m 1 0)⊗ ((m 1 0)⊸ (e 0 0 (0 ≤ 0⊗ ((0 <> 1)⊗ ((m 0 N2)⊗⊤))))))

BCu
Γ; tm(M ′), (m 1 0), (m 0 N2) ⊢ (e 1 1 ((m 1 0)⊗ ((m 1 0)⊸ (e 0 0 (0 ≤ 0⊗ ((0 <> 1)⊗ ((m 0 N2)⊗ ⊤)))))))

BCu
Γ; tm(M ′), (m 1 0), (m 0 N2) ⊢ (e (get 1) 0 (e 0 0 (0 ≤ 0⊗ ((0 <> 1)⊗ ((m 0 N2)⊗⊤)))))

BCu
Γ; tm(M ′), (m 1 0), (m 0 N2) ⊢ (e (gt (get 1) 0) 0 ((0 <> 1)⊗ ((m 0 N2)⊗⊤)))

BCu
Γ; tm(M ′), (m 1 0), (m 0 N2) ⊢ (e (wh (gt (get 1) 0) (seq (set 0 (add (get 0) (get 1))) (set 1 (sub (get 1) 1)))) 0 ((m 0 N2)⊗⊤))

Figure 6. A proof of the judgmentΓ; tm(M) ⊢ (e tR(Q) 0 (m 0 N3) ⊗ ⊤) whereN1, N2 ∈ N, N1 = 0,
M = M0[0 7→ N2][1 7→ N1], andM ′ is a partial function undefined at0,1 and equal toMo otherwise.

. We have both by Lemma 10.

5.3 Extracting Properties from the Model

We would like to extract Lemma 10 and Theorem 11 into
the object system. In general, doing so requires some confi-
dence that the extracted property is meaningful in the object
system. Such confidence is typically acquired through an in-
formal adequacy argument [8].

The adequacy of an encoding can be shown by giving
a bijective translation function from the object system to
the encoding. There are complexities in providing such a
translation for our encoding; in the object system, memory is
a term while in the encoding memory is formula. How such
a translation can be given is left to future work.

6. Conclusion
We have considered in this paper the possibility of formal-
izing the process of reasoning about properties of impera-
tive programs. Towards this end, we have described a spec-
ification logic that can transparently model imperative pro-
gramming languages with semantics defined in an natural
semantics style. An important aspect of this specification
logic is that its proof relation can be restructured so as to
yield derivations that closely resemble the ones that may be
constructed in the original natural semantics style encodings
of object systems. We have illustrated how this character-
istic can be exploited in reasoning about the properties of
the object systems. In our example, we have used an infor-
mal style of reasoning over specification logic derivations.
However, we believe that this reasoning process can be for-
malizing and we are examining this aspect in ongoing work.
In particular, we are exploring the idea of using a two-level
logic approach [6, 14] that has been successfully exploited
in conjunction with an intuitionistic specification logic in the
Abella system [6]. In this approach, we encode a specifica-
tion logic via its derivability relation within a rich “reason-
ing” logic: by using the capabilities of the reasoning logic,

we then obtain the ability to prove properties about deriva-
tions in the specification logic. One of our immediate goals is
to accommodate a linear specification logic within the same
reasoning logic that underlies Abella, thereby producing a
variant of Abella that supports the development of formal
arguments related to systems oriented around resource us-
age. Once we have an implementation of such a system at
hand, the next step would be to use it to formalize the kinds
of arguments we have presented in this paper.

In addition to actually implementing the ideas we have
discussed in this paper within a formal system, we must also
extend them so that we can reason about a larger, more re-
alistic collection of programs. The imperative programs that
we have considered in this paper use programming language
constructs permitting non-termination and memory manipu-
lations, i.e. lookup and update. In essence, we have demon-
strated that our approach can be effective when reasoning
about properties of basic imperative programs lacking point-
ers (because memory values were never used in lookups) or
dynamic allocation. Going forward, we would like to exam-
ine two particular kinds of extensions to this work.

The languagechosen in this paper does not permit
complex notions of data, dynamic memory allocation,
or functional aspects. It does permit references but the
imperative program analyzed does not use them. A
more relevant language to model would be a subset
of SML [17] excluding data-type definitions and the
module subsystem. This subset would not make mod-
eling evaluation semantics much more complex. For
example, memory allocation can be treated naturally
using universal quantifiers. We conjecture that such
changes will not alter the intuitive nature of reason-
ing.

The program chosen and its correctness property
is trivial. Programs in common use among other re-
searchers concerned with reasoning about imperative



programs are linked list (singly or doubly) manipu-
lation programs and implementations of the Schorr-
Waite algorithm[1]. Additionally, properties of pro-
grams using references can be particularly difficult to
reason about due to aliasing. Aliasing occurs when a
location can be accessed in two different ways. For
example, the program

1← 0; 2← 1; 3← 1; ∗2← 4; ∗∗3

is one where aliasing occurs; the last two program
expressions will update and lookup, respectively, lo-
cation1. Reasoning in basic Hoare logic is unsound
when programs containing aliasing are considered.
Hoare logic can be extended such that reasoning about
pointers is technically feasible but complex[18]. We
have an inchoate idea that a treatment of aliasing
should not require major changes to our specification
logic because locations are not named. Therefore, ref-
erences to aliased data is explicit. How this treatment
will affect reasoning intuitions remains unclear.

Finally, we must better understand the connections be-
tween our approach and others such as ones using Hoare
and separation based logic[3, 11, 15, 18], pointer asser-
tion logic[10], parametric shape analysis[13], and aliasing
logic[2].
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