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Abstract program to model its overall behavior. An aspect that needs
In this paper we propose an approach to reasoning aboutSPecial treatment when dealing with imperative programs in

properties of imperative programs. We assume in this con- this setting is the notion of state: imperative programs-typ

text that the meanings of program constructs are describedClly manipulate memory by storing and looking up values
using rules in the natural semantics style with the addi- in relevant cells and how exactly they do this is important to

tional observation that these rules may involve the treatme Understanding their behavior. Thus, the logic that we ceoos

of state. Our approach involves modeling natural semanticsfor our frar_‘nework must facilitat_e the descri_ption as well as
style rules within a logic and then reasoning about the be- the analysis of the role of state in computations.

havior of particular programs by reasoning about proofs in [N constructing the framework we desire, we must also
that logic. A key aspect of our proposal is to use a frag- choose an approach to presenting the semantics of a pro-

ment of linear logic called Lolli (invented by Hodas and 9r@mming language. We propose in this work to use the nat-
Miller) to model natural semantics style descriptions.rigei ~ Urél semantics style introduced by Kahnl[12] for this pur-

based on linear logic, Lolli can provide logical expressipn ~ P0se- Natural semantics style allows the meaning of a pro-
resources such as state. Lolli additionally possessed-proo 9ramming language construct to be modeled via derivations

theoretic properties that allow it to encode natural sefognt  that closely reflect the actual computations that resulnfro
style descriptions in such a way that proofs in Lolli mimic the construct. Thus, the process of reasoning about program

the structure of derivations based on the natural semantics?€havior boils down naturally to reasoning about natural se
rules. We will discuss these properties of Lolli and demon- mantics style der_lvatlo_ns. In our framework, programming
strate how they can be exploited in modeling the semanticslanguage semantics will be modeled by translating these nat

of imperative programs and in reasoning about such mog- Ural semantics descriptions into the underlying logic.sThi
els actually places two further constraints on the logic. First

it should have a structure that supports a natural encoding
1. Introduction of natural semantics st_yle descriptions. Second, the-infer
ence process in the logic should correspond transparently t
This paper concerns an approach to reasoning about thehe process of constructing natural semantics style deriva
properties of imperative programs. Such programs, written tions; this property allows reasoning about natural sefosint
in languages like Java and C, play an important role in style derivations to be reduced uniformly to reasoning abou
safety- and security critical systems. They are pervadive,  proofs in the logic.
example, in the software contained in medical devices and  The main thrust of the work in this paper is to iden-
financial systems. Programs that malfunction in such con-tify a logic that satisfies the constraints described above
texts can lead to catastrophic system behavior. The underly and that would thereby be a suitable choice for encoding
ing motivation for this work is that through the process of programs and programming language semantics within the
formal reasoning we can establish the absence of such bugsramework we seek to design. We contend that linear logic,
before these programs are run and thereby preclude undesira logic of resources and actions invented by Jean-Yves Gi-
able behavior after their deployment. rard [7], provides a natural means for treating state-based
Our objective in this work is not to reason about prop- aspects of computation and hence constitutes a good gtartin
erties of particular programs but, rather, to develop adroa point. However, the logic we use needs also to allow for a
framework within which such reasoning may be conducted. treatment of natural semantics style descriptions. Weeargu
An important ingredient of such a framework is a logic for  that Lolli, a fragment of linear logic identified by Hodas and
describing the semantics of the programming language in Miller [9], has such a character. To provide substance to our

which programs are constructed; a formalization of the se- claim, we demonstrate how this logic can be used to model
mantics can then be combined with the description of a given
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the semantics of a small collection of constructs in an im- by N) to expressions in the language that correspond to
perative programming language. We further show how the natural numbers. Given memaby, we will use the notation
meta-theoretic properties of Lolli allow us to translatéran M[z — y] to denote a modified memory given by the
formal style of reasoning based on natural semantics deriva following partial function:

tions into reasoning about derivations in Lolli. Although a _

formalization of this reasoning process is beyond the scope Mlz — y](a) = { Y ifz=a

of this work, we believe that this can be done following the M(a) ifz#a

approach used in the Abella systemn [S]. Notice that although memory is modelled as a function from

The rest of this paper is structured as follows. In the next conceptual domain of natural numbers, we will often
section, we describe a simple imperative programming lan- -+ 5 do a “lookup” using the result of a computation. By
guage and we present the meanings of the constructs in this,, apse of notation, we will allow memory to be “applied”
language in natural semantics style. We then consider d smal; he expressions that denote natural numbers in the lan-
program in this language and show how we can organize theguage.
process of reasoning about it around natural semantias styl = \ye present the semantics of the constructs in our lan-
derivations. This language and reasoning example provideguag|e by explaining what it means to evaluate them. We do

us the means for explaining and defending our main contri- g by defining an “evaluation relation” that we write as
butions in the sections that follow. In Sectioh 3 we present

Lolli and we discuss the properties of derivations in it.He t (R, M) ~ (N, M").

following section we show how Lolli can be used to formal-

ize the imperative programming language described earlier This relation is to be read as “the progrdinevaluated in

In Sectiori b, we demonstrate how the properties of Lolli can memory M returns valueN and modifies the memory to
be used in reasoning. In particular, we show that the infor- /" or, when memory is not of interest,/¥ evaluates to
mal reasoning process based on the natural semantics styl¥alue N.” When referring to components of this relation
presentation translates naturally into reasoning abaitase ~ We may refer to the “input program expression”, the “input
tions in Lolli. We conclude the paper in Sect{dn 6 with indi- memory”, the “return value”, and the “output memory”,
cations of directions in this work that may be worthwhile to respectively. We define this relation through rules in the

pursue in the future. natural semantics style that are presented in Figlre 1. For
the uninitiated reader, each of these rules is to be read as
2. A Simple Imperative Programming asserting that the reIati(_)n shown beIovy the line holds if all
Language the relations or properties above the line hold; the former

) ] ] ) ) . is called the conclusion of the rule and the latter are called
In this section we define an imperative programming lan- jis premises. Notice that if a rule has no premises then its
guage and its evaluation semantics. We use these definitiong.qncjusion is unconditionally true.
to demonstrate hovx_/ a program written in the language can A few comments are in order with regard to the rules
be reasoned about informally. in Figure[1. First, these rules are meant to be read as
schemata: actual rules are to be generated by instantiating
the schema variable®’, N1, Ny, and N5 by (expressions
The syntax of programs in our imperative programming lan- denoting) numbers if¥, R, Ry, and R, by programs inc,
guagec is given by the following rules: and M, M’, M", and M"" by memory. Second, in keeping
with the systematic confusion of natural numbers with their
R:= N|R+R|R-R|R>R|*R representation ir, we have also overloaded the operators
| R R| R;R| (R) | while Rdo R +, —, >, <, ande. Note also that with- we associate the
usual subtraction operation on natural numbafs— N5 is
0 if Ny is less thanVs. Finally, these rules make precise the
In this definition, the symbaN represents the category of interpretation that we would naturally think of associgtin
expressions corresponding to the non-negative integets an with each of the constructs in the language. In this regard,
the programstR, Ry < Rs, and R;; Ry correspond to the first five rules need no further explanation. The sixth

2.1 The Language

memory lookup (like irC), update of the value stored Bt and seventh rules encode the meaning of memory lookup
to Ry, and evaluation of?, followed by evaluation ofR,, and update, respectivelyR causesk to be evaluated and
respectively. The last construct included by the syntagsul the memory to be looked up at the resulting location while
permits indefinite iteration in the language. leaving the memory unchanged, wherdas«+ R, causes

We will need a model of memory in order to present memory to be changed at the location corresponding;to
the semantics of the constructs in our language. Towardsby the value corresponding #®,. Notice also that the right-
this end, we will represent memory as a partial function most premise of the memory update rule ensures that the do-
from natural numbers (denoted also in an overloaded fashionmain of memory remains fixed throughout evaluation. The



(By, M) ~ (N1, M) (Eg, M') ~ (N, M")  (Ey, M)~ (Ny,M’)  (Ey, M’} ~+ (Na, M)
(N, M) ~ (N, M) (E1+E3, M) ~ (N1 + Ny, M”) (B1—Eq, M) ~ (N7 — Ny, M")

(By, M) ~ (N1, M) (B, M"Y~ (No, M") Ny >Ny (B, M)~ (N;,M") (B, M) ~ (N3, M") Ny <N,
(B1>Ey, My ~ (1, M") (E1>Ey, M) ~ (0, M")

(R, M)~ (N,M")  M/(N)=N' (Ry,M)~ (Ny,M')  (Ry,M')~ (No,M”)  M"(Ny) =Ny
(xR, M) ~ (N', M) (Ry < Ry, M) ~ (Na, M"[Ny — Na])

(Ry, M)~ (N1, M')  (Rg, M) ~ (Na, M")
<R1; Rz, ]\1) ~3 (Nz, ]\/IH)

(Ry, M) ~ (0, M) (Ry, M) ~ (N1, M’)  (Rg, M)~ (No, M"")  (while Ry do Ry, M"') ~ (N3, M"") Ny >0
(while Ry do Ry, M) ~» (0, M) (while Ry do Ry, M) ~» (N3, M)

Figure 1. Evaluation semantics for the imperative langudge

last three rules make precise the meaning of sequencing andiocations using a third location as temporary storage. Vlle wi

of while as an iteration construct. build a derivation piecemeal, showing that for sofiethe
When building derivations, we may build derivations evaluation relation

for premises in any order provided the constrains between

premises are met. However, we may significantly simplify

the process of proof construction if we build them sequen-

tially from the left most premise to the right most premise. pg|ds.

Observe that adopting such a derivation building strategy | et x pe the following derivation for2 « %0, M) ~
does not limit the derivations that can be built. (M(0), M) whereM’ = M][2 — M(0)]:

(2 + %0; (0 = #1;1 < %2), M) ~~
(N, M2+ M(0)][0 = M(1)][1+~ M(0)])

2.2 Derivations as Computations e
(0, M) ~ (0, M)

The rules defining the evaluation semantics provide us a (2, M)~ (2,M) (2« «0,M) ~ (M(0),M)  M(2) =N,
means for constructing derivations of particular evabrati (2 4= =0, M) ~ (M(0), M")

relations. Such derivations can be understood as an abstrag_et ¥ be the following derivation for0 « %1, M') ~~
view of the computation that results from particular pro- (M'(1), M") whereM" = M'[0 — M'(1)]
grams. For example, suppose we are given a particular pro-

gram R and a starting memory/ and we desire to under- (1, M) ~ (1, M)
stand what value this program computes and what impact (0, M) ~ (0,M") (L M) ~ (M'(1),M")  M'(0) = N,
it has on memory. In this case, would pick two “meta vari- (0 4= 51, M') ~ (M'(1), M")
ables” N and M’ and we attempt to construct a derivation Finally, letQ be the following derivation fofl « %2, M"") ~
for the evaluation relation (M"(2), M"") whereM"" = M"[1— M"(2))]:

(R, M) ~ (N, M) (2, M) = (2, M)

(L, M7y~ (L,M7) (32, M") ~ (M"(2),M")  M”(1) = Ns

with the proviso that we may instantia¥¢andA/’ as needed (1« %2, M") —~ (M"(2), M""

along_the way. No_te also that the re_sult of a computation Then we can combine®, ¥ and(2 to obtain the complete
must in fact be validated by success in constructing such ayarivation that is shown below for the complete program
derivation. Thus, by analyzing all the possible derivagion expression of interest:

we also obtain a means for establishing properties of com-
putations. v v — Q e
. . . . 1;1 2,M'") ~ (M"(2), M
To illustrate the connection between derivations and com- 0 il x2 M) v (M7(2), M")

ISHERE : , - - M) — (M7 (2), M
putations in this setting, let us consider the program o @00 il a2), M) - (MT(2), M)
To arrive at the desired conclusion, we have to show that

2« %0; (0 < *1;1 + x2) M, the memory at the end of the computation, is equiva-
lent to

and its evaluation in some memody defined at locations
0,1, and 2. This program swaps the values stored at two M2 — M(0)][0 — M (1)][1 — M(0)].



Substituting the definition of\/’ in the definition of M”
yields
M[2 — M(0)][0 — M[2+— M(0)](1)].
By observing that
M[2— M(0)](1) = M(1)
we have
M" = M[2— M(0)][0 — M(1)].
Replacing this result fok/” in the definition ofA"” we get

M[2 — M(0)][0 — M(1)][1~
M2 — M(0)][0 — M(1)](2)]

Finally, by observing that
M[2 — M(0)][0— M(1)](2) = M(0)
we arrive at the conclusion we want:
M" = M2+ M(0)][0 — M(1)][1 — M(0)].

2.3 Informal Reasoning about Imperative Programs

As we have explained earlier, we can extract information ) ,
about the behavior of a program by analyzing the deriva- (0, M") andA’(0)

tions that result from it. We illustrate this possibility this

(1, M) ~ (1, M)
(1, M) ~ (0, M) (0, M) ~ (0,M)
((*1)>0, M) ~ (0, M)
(while (x1)>0 do U, M) ~~ (N, M)

0<0

If M (1) = N; and it is assumed this lemma holds for all
memorylW wherelV (1) < N; then the following derivation
can be constructed:

Q
1>0 v (while (x1)>0 do U, M"") ~ (0, M"")
(while (¥1)>0 do U, M) ~» (0, M"")

In this derivation, we letM’ = M0 — M(0) + M(1)],

M" = M'[1 = M(1) — 1], andM"" is the result mem-
ory from our inductive hypothesis. Let be a derivation
with an end-sequent gf(x1)>0, M) ~» (1, M) and¥ be

a derivation with an end-sequent (§ «+ *0+x1;1 «+
x1—1, M) ~ (M(1) — 1, M"). Both of these derivations
can be constructed but are omitted; they are uninteresting
with respect to this case. Sindé¢’(1) < N; the inductive
hypothesis can be used to give a derivatiorior O

X

From Lemmdl1L, the following theorem is easily shown:

Theorem 2 (Total Correctness oV using structural oper-
ational semantics)vN, M if N € N and M is memory
defined atM (0) and M (1) then3M’ such that(V, M) ~

N
7
=0

subsection by showing how to demonstrate the correctnessProof of Theorerhl2By case analysis on the derivation for

of a program for calculating the sum of the integers from
to a particular numbei. Our argument at this stage will be
informal; later sections will discuss a framework for fodma
izing this style of argument.

Let U be the following program:

while (x1)>0do 0 < x0+*1;1 + *1—1 1)

Consider the prograir written to calculate the value of

N
>~ i constructed witlU:
i=0

0+ 0;(1«+ N;U) (2)
We will show that given anyv and any memory defined
at0 and1, V calculates the correct answer and stores it in

memory.

Lemma 1 (Total Correctness o/ using structural opera-
tional semantics) VN, No, M if Ny,No € N and M is
memory whereV/(0) = Ny and M (1) = N; then3M’

N
such that(U, M) ~~ (0, M) andM’(0) = Na+ > i

=0
Proof of Lemma&ll This will be proven by induction ofV; .
If Ny = 0 then the following derivation can be constructed

0

andM’(0) = Ny = No+ > i
=0

(V, M) ~~ (0, M) it suffices to show there is a derivation
for (U, (M[0 — 0])[1 — NJ]) ~ (0, M) whereM'(0)
N

>~ 4. This is shown using Lemnia 1.
1=0

3. The Specification Logic

In this section we present Lolli, the fragment of linear ogi
that we will use to formalize our imperative programming
language. The first subsection introduces the language of
Lolli and clarifies the meaning of its logical symbols thrdug
inference rules. This part of our presentation emphasiees t
declarative nature of Lolli. When we use it to model natural
semantics style descriptions, we would also like to be able t
capture the structure of natural semantics style derinatio
Towards this end, we show in the second subsection the
relative completeness of goal-directed reasoning in Lolli
This discussion culminates in a reduced proof system for
Lolli that we use exclusively in the rest of the paper.

3.1 The logic Lolli

Lolli is a logic that is built on the simply typed-calculus

of Church [4]. The types underlying its language are con-
structed from a collection of primitive types that contajn
the type of propositions, and at least one other type; for the
moment, we assumeto be the only such type, but we will



add to this collection as needed in later sections. The remai
ing types build on these primitive types using the function
type constructor: if, andr, are types, them; — 75 is also

a type and it denotes the collection of functions freqto

T9.

The terms of Lolli are constructed from collections of
typed variables and constants using the usual abstractibn a
application operations: the former yields the tekmt of
type 1 — 72 given the terny of type » and the variable
z of type 1, and the latter yields the ter(n; ¢2) of typer
given termst; andi, of typesm; — 7 andr respectively.
Abstraction is a binding operation that defines a scope for

the variable, a concept that we will assume the reader to

be familiar with. Two terms are considered to be equal if
one can be obtained from the other by some sequenee of
conversions, i.e. the replacement of a subpart of the form
Az.t by Ay.t' providedz andy are variables of the same
type, y does not appear free ihandt’ results fromt by
the replacement of the free occurrences dfy y. Given a
term s of the same type as, we will write ¢[s/x] to denote
the result of substituting for the free occurrences afin ¢

in a capture avoiding way; notice that in correctly carrying
out such a substitution, we may need to apply same
conversions. A termis said to be obtained by-contraction
from another terny if it results from replacing a subterm
of s that has the forn{(Az.t1) t2) by t2[t1/2]. Two terms

ject of the form
ARG

whereT" is a set of formulasA is a multiset of formulas
andG is a formula. Intuitively, such a sequent corresponds
to the claim thatG, thegoal formulg is derivable given the
resource§” andA. The resources il are distinguished as
beingunboundedformulas inT" would typically be used to
represent unchanging facts in a specification setting, such
as the natural semantics rules governing the behavior of im-
perative programs. On the other hand, formulag\ircon-
stituteboundedresources: referring again to the imperative
programming example, they may be used to represent the
state of memory at a particular point in computation.

The syntax of formulas that may be used as resources and
goals is limited in Lolli. Specifically, they may only be the
P andG formulas described by the syntax rules below:

P:= A |P&P|G—P|G= P|VYa.P
G:=T|A|G&G|P—-oG|P=G|Vz.G
| 2.G|IG|GRG|GaG
We refer toP formulas also aprogram clause formulasNo-
tice that the connectivels, —, =, andV are allowed in both
kinds of formulas. However, there are differing constraint

in the use of- and=-. When these are used in the resource
formulas, the formula on the left must be a goal formula and

©)

are also considered equal if one can be obtained from thethat on the right must be a resource formula. When they are

other by some sequence of applicationsgetontractions
or its inverse. We will use this notion of equality impligitl

in the rest of this paper. In the context of the simply typed
A-calculus, it is known that every term has a normal form
modulo 5-contractions, i.e. it is equal to a term which does
not contain a subterm of the forf{\z.t1) t2). We will
depict terms solely by their normal forms.

Lolli has a set of constants that serve to build a logic over
its terms. These constants, referred tdagcal constants
consist of the following&:, —, =, ®, and® all of typeo —

(o — o) and written in infix form;! of typeo — o; and, for
each type, the constantg, and3, with type(r — o) — o.

The constant¥, and3, are referred to as quantifiers and
the remaining constants constitute the logical connextive
addition to these constants, expressions in Lolli may a¢so b
formed from user defined constants, referred toadogical
constants The well-formed terms of type in Lolli are
distinguished asormulas Notice that a formula may have
as its top-level symbol a logical constant, a variable or a
nonlogical constant. In the latter two cases, the formula is
said to beatomic Further, it is a rigid atom if its top-level
symbol is a nonlogical constant. We shall use the syntactic
variableA to denote atomic formulas am. to denote rigid
atoms.

At a logical level, Lolli is oriented towards proving judg-
ments represented IsgquentsFormally, a sequent is an ob-

used in a goal formula on the other hand, the formula on the
left must be a resource formula and that on the right must
be a goal formula. As we shall see presently, these restric-
tions play an important role in maintaining the structure of
sequents in the course of a derivation and therefore in the
coherence of the inference rules for Lolli. In addition te th
already mentioned connectives, goal formulas may contain
T,3,!, ®, and®.

The rules for deriving sequents in Lolli are presented in
Figure[2. The sequent that appears below the line in each
of these rules is called its conclusion and the sequents that
appear above the line constitute its premises. I'lee R in
the labels of these rules denotes whether the rule intraduce
a logical symbol on the left or the right of the. Grouped
by L or R they may be referred to as left-introduction rules
and right-introduction rules, respectively. In the rules-p
taining to the logical symbols, the formula in the conclu-
sion that contains the introduced symbol is calledphe-
cipal formula This terminology is extended to thd rule
andabsorbd rules to denote the formulas represented4y
and B, respectively. When we writE, F' in the unbounded
context in these rules, we mean it to denbte {F'}, i.e.

F may also be contained iii. On the other hand, in the
unbounded contexA, F' represent\ W {F'}, i.e. A con-
stitutes the bounded resources with the exclusion of the se-
lected copy of the formuld’. Relatedly,A;, A, in such a
context stands foA; W A,, i.e., the comma represents mul-
tiset union.
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Figure 2. Theinference rules in Lolli. In th€R rule,c must not occur if’, A, or G. In theVL and3R rules, the ternt
generalized upon must be such thBtt) and(G t) are a program clause formula and a goal formula, respegtivel

Some comments on the inference rules are useful both int- to the other and could potentially result in destroying the
understanding the logical structure of Lolli and the intetdd  form of permitted sequents in Lolli. However, the restocti
meaning of the logical symbols. The rules for the use of re- on what can appear on either side-ef and=- in goal and
source formulas in Lolli are all stated with respect to the program clause formulas ensures that this does not happen.
bounded context. The only exception to this is teord The! connective corresponds to treating its argument as be-
rule which encodes the possibility of making a copy of an ing independent of the finite resources. Theaule cements
unbounded resource before using it in a bounded fashion.the fact that all the bounded resources must be consumed in
The rules for the quantifiers give them their usual interpre- a derivation. In this setting corresponds to a “sink” or a
tation with the caveat that the domain of quantification is garbage collector for the bounded resources.
restricted so as to preserve the normal form of sequents in  We illustrate the rules of Lolli by considering a few proofs
Lolli. The formulaG; ® Gs is interpreted as saying that there that use them. First, consider the sequent
are enough resources to show béthandGs: the rule for
proving this formula requires each component to be shown 0:0F (A1 & Az) = (A1 ® Ag).
from a partitioning of the bounded resources. The connec-
tives& and® are meant to encode different kinds of choices.
The formulaG; & G signifies that the available resources
are sufficient to satisfy eithér, or G2, whichever one we
choose. Accordingly, to prove a sequent that has such a for-
mula on the right of-, we have to show that we can prove se-

This sequent expresses the intuition that if we haye: Ao

as an unbounded resource, then we must simultaneously
have bothA; and A, provided our bounded resources are
empty. A derivation for the sequent is shown below.

id id

guents with the same resources and eadk,cdndG, as the Ay & Ay Ay F Ay A & Ay A E A SR

goal. On the other hand, if the formula & B, is available Al Aoy A, b4 ® A

as aresource, this means that we can choose which one of the 1 ‘zjf qu" ilflj z‘;; ‘;‘_129 ‘;QA &L
components we actually want to use, something that under- A A G A s, absord

lies the left-introduction rule for this connective. In doast, A & Ayl Ay @A,  bserd

the formulaG; ® G> means that we can have one @f 00 (A & Ay) = (A1 @ Az) =

or G, based on the resources, but we do not kraopriori This proof uses thé& L andabsorb rules in a situation when

which. Correspondingly, to prove a sequent that has such athe formula on the right is 4; ® A,, i.e., is not atomic. Such
formula on the right of-, it suffices to prove a sequent with 3 proof is not goal-directed, i.e., if we think of the procets
the same resources and with onéffor G, asthe goal. The  searching for a proof for the given sequent, the formula on
—o connective captures a notion of resource conversion: To the right of the- symbol does not guide the choice of rule
show(G — G we must somehow us@; in showingGa to use to arrive at the conclusion. In the next subsection we
and, conversely, when givell; — B>, we may consume il consider the idea of uniform proofs that will provide us
some of the resources to shaw and then use3; itself as  a means for restricting attention to only goal-directedyfso

a resource. The> connective also represents resource con-  Notice that the unbounded availability of, & A is
version, but this time an unbounded resource. Note that theimportant to the above proof: if we change the sequent to

rules for— and = may move formulas from one side of
0;0 = (Ar & Ag) —o (A1 ® Ag)



then it is no longer provable. Given the formula & A, Towards understanding uniform provability, consider the
as a bounded resource, we have to make a choice betweeproof shown in Section 3.1 for the sequent

using withA; or A,, also as a bounded resource. This choice

is mutually exclusive; we may not have both andA,. On 0:0F (A1 & A2) = (A1 © Az).

the other hand, if4; ® A is on the right oft-, then both  That proof is not a uniform proof. In that proof, there are two
A, and A, must be available as (bounded) resources for the gpsorb rules and twak L rules that have as a conclusion a
sequent to be provable. sequent in which the goal formuld; ® A, appears as the

The process of finding proofs for sequents typically in- right of . However, the same sequent does have a uniform
volves search. Two common strategies that are used in thisproof that is shown below:

setting areforward chainingandbackward chainingThese

strategies refer to how we use implicational formulas, Wwhic - 4 -

in Lolli could be ones that have eithep or = as their top- MkAihbA T, d&dndbdy )

n : > 1At r = as P NG Ay Ay & Ay F A A & Ay Ay & Ay F A,

level connective, available in resources in guiding thecea A & A0 4, “bsord A & Ay OF 4, absord
In the former case, we use the fact that the lefthand side of AL & A0 F A @ Ay B

the implication is already available as a resource and we the 00 (A & Ay) = (A1 @ Ay) R

reason forward, by adding the righthand side as a resourcein fact, every provable Lolli sequent has a uniform proof as
In the latter case, we observe that the goal formula of the we now show.

sequent matches the righthand side of the implication and
then reduce the task to showing the lefthand side from the
available resources. The following proof can be understood
as the result of using a forward chaining strategy to prove

Theorem 4 (Lolli Admits Uniform Provability) The se-
quentl; A + G has a proof in Lolli if and only if it has
a uniform proof.

the sequentl;; A; —o Ap, Ay —o Az - Aj. Proof. The “if” direction is obvious. For the “only if” di-
rection, we consider a proof that is not uniform and show
A A A, AT A AAE A how to transform_ it int_o a uniform proof. We associate with
A 0F 4, absord Ay Ay Ay —o A3 F Aq — L a proof a non-uniformity measure that counts the number of
AL AL —o Ay, Ay —o Az F Ag —L inference rule occurrences that do not act on a complex goal
In Sectio 3.2, we will consider a different proof resulting formula that appears to the right lefin their conclu§ion. If
from a backward chaining strategy for this sequent. this measure is non-zero, we show how to reduce it by 1. The
conclusion then follows by induction on the measure.
3.2 AReduced Proof System for Lolli If a proof has a non-zero non-uniformity measure, then

The derivation system for Lolli that we saw in the previous there must be a path in it in which there is a first occurrence
subsection presents us with alternative ways to construct a0f @ left rule that has a complex goal formula to the right of
proof. For example, we may have the choice of using ej- I~ in its conclusion. We show how to reduce the height of
ther a left or a right rule at a particular point in proof. In this path by 1. By induction on this height it follows that we
modelling natural semantics style rules for imperative-pro Can eliminate this violation of uniformity and thereby reeu
gramming languages, we will want to use sequents in a Spe_the non-_unlformllty measure of the proof. Observe that.smce
cific way: the unbounded context will encode the semantics the rule in question is the first one along the path to violate
of programming constructs, the bounded context will model the uniformity property, it must be preceded in the proof by
the state and the goal formula will represent the program & right rule. We use this fact in our argument. In particular,
producing the computation. If we are to analyze the prop- We consider the possible cases for the right and left rulds an
erties of programs using this setup, it would be ideal if we Show that the left rule can be permuted above the right one,
could focus our attention on Lolli proofs that closely fol- thereby moving the violation of non-uniformity closer to a
low program behavior. We show here that this is possible. €af- _ _ _ o

In particular, we demonstrate that, from a provability per- N a detailed consideration of the cases, it is useful to cat-
spective, it suffices to look at proofs that are goal-direaie ~ €90rize rules based on the number of premises they have.
that, when looking at derivations bottom up, the first step is Category I will represent rules with one premise and cate-

always to simplify a complex goal formula. gory Il will represent rules _vvith two_ pre_mises. .

The following definition, first introduced by Millet Suppose that the case in question mvoIves_ two_mfgrence
al[16], provides an encapsulation of the idea of goal-dirdgss 'ules from category I. An example of such a situation is the
in the context of Lolli proofs. It was or following:

Definition 3 (Uniform Proof) A uniform proof is a Lolli -
proofin which every sequent with a non-atomic goal formula AL By Gy - Go
on the right oft- is the conclusion of an inference rule that TABFG =G °F

. . &L(i€{1,2
introduces the top-level logical symbol of that formula. DA BL & By F Gy — Go (e {l.2y)



This proof can be rearranged as follows:

v =
DAEB TidaBFG IS
= I Ay, Ao, By — By =Gy - ;A3 - Gy ol
A, B, Gy = Gy . AL A2, A3, By — Bo -G @ Ga
A, B & By G F Gy HU ) - -
FAD I&B L’FG} é R The other cases for the rules in the category under consider-
e ation are treated similarly. O

By permuting the left rule above the right one, we have

reduced the length of the path by 1 as required. A similar e are thinking of modeling natural semantics style in-
argument applies to all the other cases of rules in these twoference rules using theo connective: modeled natural se-
respective categories. mantics rule conclusion relations will occur to the right,
Suppose that the case in question involves a right infer- 5150 known as théead of a — and modeled premise re-
ence rule from category | and a left inference rule from cate- |ations will occur to left, also known as theody, of a —o.
gory Il. An example of this kind is presented by the follow-  \when modeled this way,- L application on formulas with
ing derivation: heads matching atomic goals mimics natural semantics style
derivation construction. A backward chaining proof search
= strategy is one where this process is repeated for proof con-
v [0, By G SR € {1,2}) struction. _ o
DiaEB T B FGi&G The following definition captures the structure of proofs
DiAL Az, By — B2 G1© G built using a backward chaining proof search strategy.
In this case the derivation can be rearranged as follows to
once again reduce the length of the path by 1:

Definition 5 (Simple Proof) A uniform proof is simple
if every left introduction inference rule instance acts on a
marked formula. A unigue formula in the bounded context

v E is marked if it is the principal formula of ak instance or if:
LAEBL DidaBFEG

;AL Ay, By — By, F Gi o
T80, 0 By < BoF Groo Gy CRUE{L2Y

e P, or P, are marked in the premises sequent d¢ A
instance then the formul®&;, & P, is marked in the
The other cases for rules from the categories under consid- ~ conclusion sequent.
eration are similar. * P[t/x] is marked in the premise sequent of&instance
Suppose the case in question involves a right inference  then the formulavz. P is marked in the conclusion se-
rule from category Il and a left inference rule instance from quent.
category |. An example of this kind is the following: e P is marked in the right-hand premise sequent ebal
instance then formul& — P is marked in the conclu-
v = sion sequent.
DALBEG TG o e P is marked in the right-hand premise sequent ef d
81,80, BF Gi®C2 1y oy instance then formulé’ = P is marked in the conclu-
D381, B1 & By GL® G ' sion sequent.

Here again, we can permute the left inference rule above the

: ) The second proof from Sectign 8.1 is an example of a
right one as follows:

proof that is not simple. This can be illustrated by attemgpti
to mark the proof according Definitidd 5. In the following

v proof, the dots indicate formulas which can be marked.
A1, Bi -Gy &L =
T;A1, 05, B & By F G ® Gs LA bGe o 4 _ _
T;A1,A2,B1 & Bo - G @ Go mzd Ay - A id A A - A id
The other cases under this combination are treated signilarl AL 0F 4, absord Ay Ag, Ay —o Ag - Ag —1L
Finally, suppose that the situation under consideration Ai;Ar — Ay, Ay — Az Ay — L
involves a right and left inference rule both from category Consider the bottom mosto L instance principal for-
Il. An example of this kind is the following: mula A; — A,, call this instance one. According to the
marking strategy, for this formula to be markdd must be
= o marked at the root of the right-hand premise sub-proof of in-
N I;As, Bo b+ Gy ;A3 -Gy stance one. Consequently, instance one acts on a unmarked
;A1 F By A0, A3, Bo -G @ Gs . ?R formula.

T3 A1, 82,83, B1 — By F G1 @ G The following proof is a simple proof for the same se-

Here we rearrange the derivation as follows, again obwousl quent. Observe that every principal formula of a left intro-
reducing the length of the path to the errant left rule by one. duction rule is marked.



This non-simple uniform proof may be permuted to one with

id the following form:

A1§A1|—A1

—_———id
A0 A, Absord T A, . .
Ay AL o Ay A, A dg b Ay
- — L
Ay Ay —o Ag, Ay —o Az - Ay X v
. . T;A3 - P A, P4 Py =
_ We now show that every provable sequent in Lolli has a T A AP =B F P L A Pr4
simple proof. T;A1, Az, A, Py — P, Ps < P F A -

Theorem 6(The Original Specification Logic Admits Sim-  The remaining permutations involving non-simple and

ple Provability) The sequenif; A - G has a uniform proof  — |eft introduction instances and follow this permutation
in Lolli if and only if it has a simple proof in Lolli. closely. O

Proof. This proof is similar to the proof given in Theoréin 4. Instances ofibsorb may appear anywhere prior to the use

The “if d|_rect|o_n Is obvious and n the “only if” direction, ;g principal formula. Without further meta-theoretica-
we associate with a proof a non-simple measure that counts,

L . sults, natural semantics style derivation mimicry in Luiiil

the number of unmarked p”’?c'pa' formulas occurring to the be modulazbsorb instance placement. The following defini-
left of a . If this meastre IS non-zero, we show h.OW 0 ion prescribes an exact placement foralord instance.
reduce it by 1. The conclusion then follows by induction on
the measure. Definition 7 (Coincided Proof) A coincided proof is a

Observe that if a non-simple instance occurs below an simple proof where everybsorb rule instance unbounded
absorb instance a permutation is immediate. Therefore, we premise formula corresponding to the principal formula is
restrict analysis to non-simple instances below instatias ~ the principal formula of a left introduction or identity eul
are notabsorb. instance directly above it.

_ Suppose the non-simple instance & ar v left introduc- The first proof in this section is not a coincided one
tion instance. Observe, that the rule above this non-simple yocause ambsorh instance is detached where the proof

instz?mce_must be_aleftintroduction instanﬂgis atomic so in Subsectio 3]2 is a coincided one becausezdibrb
no right introduction rules apply. If the rule is below/aor instances satisfy Definitidd 7.

& left introduction instance permutation of these instances _ _ o -
is immediate. If the rule above is a left introduction ingtan ~ Theorem 8(Lolli Admits Conincided Provability) The se-
of —o a straightforward permutation is possible. We consider quentl’; A = G has a simple proof in Lolli if and only if it

one such case in detail wheteand= are simple proofs. has a conincided proof in Lolli.
v B Proof. This proof is similar to the previous ones. Observe
DALPFB DAy Pk A that _aII c_oincided proo_fs are simple_ ones, t_his sa_tisfies the
AL Ay PPy A ok “if” direction. Now consider the “only if” direction. Itis asy

LA, Ag, P —o Py, P& P = A LLie{3.4) to see thatibsorb instances may be permuted up until they

This non-simple uniform proof may be permuted to one with coincide with a left introduction or identity rule instance
the following form: From this, we may conclude the argument by induction on
the measure of non-coincidedisord rule instances. O

F:Al_qé Fp = Theoremd (16, and] 8 can be used to yield a reduced
TABCEFD Y A, PEA proof system that admits only coincided proofs. To do so
T;A1, 00, P — P, P3& Py = A - we first inductively define a unary predicat®|| whereP is
When the non-simple instance isvaleft introduction in- @ program clause formula that captures a backward chaining
stance or the instance above issathe permutations differ ~ proof search strategy. The predicate takes a program clause
only slightly. formula as an argument and returns a set of triples where the
Suppose the non-simple instance is«@or = left intro- first, second, and third projection is a set of goal formulas,

duction instance. Observe, that the right premise must be-a multiset of goal formulas, and a program clause formula,
gin with a left introduction instanced is atomic so no right ~ respectively. Each triple represents unbounded(the ficst p
introduction rules apply. Furthermore, observe that tiie le jection) and bounded(the second projection) proof obliga-
premise is irrelevant with respect to marking. We consider tions for some program clause formula. An unbounded proof
one case in detail where and= are simple proofs. obligation is one that must be provided strictly from the un-
bounded context and a bounded proof obligation is one that
must be proved from some portion of the bounded context.

v =
X ;ALPFP TiAy Pk A Let ||P|| be the smallest set such that:
Ak Py [ ALA PP PR A O F

541, A9, A3, Py — P, Py — Py A — L 1. <®v®7A>€||A||



2.if (T,A, P & Py) € ||P]| then both(T', A, P,) € || P]] Lettg be afunction that translates programs frGmiven
and(I', A, P,) € || P|| in Sectior{ 2 into terms of typR in the specification logic.

3.if (T,A,Vz.P) € ||P]|| then, for all closed terms, i ifi e N
(T, A, Plt/z]) € ||P]| (add tr () tr(k)) if i = j+k
4, if (I‘,A,P1:>P2>€||P||then<FUP1,A,P2>€||P|| (S’U,btR( ) (k)) Ifl:]—k
5.if (T,A, P, —o P,) € ||P|| then(T, Aw Py, P,) € ||P N ) (gtte(h) te(k))  ifi=5>k
< ' o) € lIPihentt, A Bo) € 1171 (i) (get tr(5)) if i = *j @)
Let our specification logic have all right introduction (set tr(j) tr(K)) if i=j<k
rules from Figurd 2 and the back chaining rules given in (seq tr(j) tr(k)) !f L= J;k{ '
Figure[3. (wh tr(j) tr(k)) if i =whilej dok

There are two forms of backward chaining in this figure
both having as their principal formul®. Intuitively, an
instance of both could replace a series of left introduction
instances in a coincided proof. Using the former requirast th
the left introduction series begin (in a bottom-up reading)
with anabsorb instance.

Observe that any function can be represented as set of
tuples relating inputs to outputs. Such representatioas ar
often referred to as function graphs. gt be a recursive
function that translates memory function graphs to mukise
composed exclusively of occurrences of the binary predicat
m with the typeN — N — o. The first argument to
m represents a memory location and the second argument
represents the value stored at that location.

0 if M =0
b (M) = { (m o) im(M) it M= (,0)UM
(5)

The ternary evaluation predicatds defined in Figuréld
and has the typ® — N — o — o. This definition mod-
Proof. In the “if” direction, due to the definition of the back-  els the natural semantics rules given in Fidure 1. Its first ar
ward chaining rules, any back chaining instance in the spec-gument is the program expression to be evaluated, its sec-
ification logic proof can be replace by some sequence of left ond argument is an element framrepresenting the return
introduction andiwbsorbd instances from Lolli. value of the input program, and its third argument is a for-

Now, consider the “only if” direction. Application of mula that must be proved in the memory left behind after
Theorems$ ¥ followed bly]6 and finally 8 allows us to con- the program expression has been evaluated. In this defini-
vert a Lolli proof to a coincided proof. Finally, by Defini- tion, explicit quantification has been removed for clavi.
tion[5 and the definition of| P||, we may replace runs of capitalized terms occurring in the head of a program clause
left-introduction andibsord instances by one of the two in-  formula are universally quantified variables. All capitalil
stances of backward chaining. O terms occurring exclusively in the body of a program clause
formula are existentially quantified variables.

The e predicate relies heavily on a continuation-passing
4. Modeling Imperative Programming style[ls_)] where _the qniversally guantified _varia_lo]?ewith

type o is a continuation. The use of continuations allows

Languages a natural way to express the subsequent evaluation of pro-

In this section, the imperative programming language de- gram expression in potentially modified memory. For exam-
fined in Sectioi R is modeled using the specification logic ple, consider the program clause formula in Figure 4 model-
presented in Sectioh] 3. Additionally, proof mimicry of ing sequencing in the object system. As noted at the end of
derivations is demonstrated by considering the proof of a Subsectiof 211, one method for building a derivation would
modeled evaluation relation and that evaluation relations be by building derivations for the premises in a left-tohtig
derivation. Throughout this section and the rest of this pa- order. We capture this method in this formula: the first pro-
per, we refer to the imperative programming language and gram expression should be evaluated and this may result in
its evaluation semantics as the “object system”. modified memory, the second program expression should be

modeled for evaluation in this modified memory. Therefore,

we extend the continuation with an evaluation predicate for
4.1 The Model the second program expression.
Our model extends the kinds of types we may have. Types For each natural semantics style rule given in section
in our model will now include a type for programs in the [2.1 there is a corresponding formula in Figlte 4. A simple
model,R and for syntax representing natural numbé¥s,  heuristic was followed to model each rule: modeled premises
(again, overloaded for use in the specification logic). of a rule “extend” the continuation, becoming the body of a

Theorem 9 (The Specification Logic and Lolli Equiva-
lence) The sequent’; A + G has a proof in Lolli if and
only if it has a proof in the specification logic.



;0 By L0 EB, ;A O L AL FCL

BC,

;0 By
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BCy
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have the proviso that,m > 0 and({By,..., B, },{C1,...

Figure 3. In the specification logic, these back chaining rules willlages all left-introduction rules from Figurk 2. Both
,C

m}: A) € |1B]|

program clause formula. Continuation extension is done in
left-to-right premise order. Finally, the conclusion oéttule
will become the head of a program clause formula.

As we did in Sectiofi]2, we will overloaded the operators
+, —, >, and<. Again, we associate the usual subtraction
operation on natural number¥; — N, is0 if V; is less than
Ns.

Let I" be a set exclusively containing the formulas from
Figure[4. The evaluation relatioff’, M) ~~ (N, M’) de-
fined in Sectiof 2]1 is translated to the sequent:

Tt (M) - (e te(E) N T) (6)

The use ofT here “throws away” the memory resulting from
this evaluation, i.e what i3/’ in the evaluation relation. If
inspection of this memory is necessary, we may replace
with a goal formula. For example, if we wanted to inspect
the value in memory stored at locatidrwe could use the
following sequent:

st (M) - (e te(E) N1 (m 1 N3) @ T)).

In our model of the object system, memory is accessed
and modified using the subformula

(m N1 N2) @ ((m Ny N3) — C)

where N1, Ny, and N3 have the typeN. When N, = N3
the operation is a lookup, otherwise it is an updatelMif
is memory undefined av; then a proof of this subformula
must have the following structure due to the meta-theaktic
results from Subsectidn 3.2 and our model.

o Ditm(D), (m Ny No) F C 5
T;(m Ny No) F (m Ny Np) ¢ Tst,(M) F (m Ny N3) — C ”R
T (M), (m Ny No) - (m Ny Na) @ (m Ny N3) = C) o
Therefore, our treatment of state in our specification logic
has an intuitive and logical reading of “remove the vaNie

at locationN; and replace it with the valu®’s”.

4.2 Proofs as Computations

Consider the derivation given in Subsectidn 2.2 for the
relation
(1= %2, M") ~ (M"(2), M")

where
M" = M2+~ M(0)][0 — M(1)]

and M is memory defined &, 1 and2. The sequent corre-
sponding to this evaluation relation is

D;(m0M(1)),(m1M(@1)),(m2M(0)),tm(0) =
(e (1+=*2) M"(0) T)

where O is memory and for aln € N if n > 3 then
O(n) = M(n), otherwiseO(n) is undefined. A proof of
this sequent can be found in Figure 5. In this proof right
introduction rules are omitted.

A mimicry of the derivation can be seen in this proof:
for every rule instance that occurs in the derivation there
is a correspondin@C,, instance with a principal program
clause formulal that models that derivation rule instance.

5. Reasoning about Properties of Imperative
Programs Using the Model

In this section, we show that our model of the object system
can be used to prove a similar property to what was shown
in Subsectio_2]3. As it was in Subsection]2.3, the prop-
erty proven is trivial. However, the goal of this exercis¢os
demonstrate that the structure of the argument on the model
follows very closely the structure of the argument from Sub-
sectior 2.B. In this sense, reasoning about propertiesrof ou
model can be intuitive. This advantage when reasoning is a
result of the mimicry exposed in Subsection|4.2.

5.1 Correctness as a Property of Proofs in the Model

We must model the Lemnid 1 and Theofdm 2 in the specifi-
cation logic. The modeled lemma and theorem rely on the
sum program from Equatidd 2, the term translation func-
tion from Equatiof ¥4, the memory translation function from
Equatior[b, the evaluation predicatdrom Figure[4, and ,
tacitly, the relationship translation function from EgjoafG.
As defined in Subsectidn 4.1, the $eis exclusively inhab-
ited by formulas from Figurigl4.

Lemmd10 encodes Lemrmh 1 from Subsedtioh 2.3 in the
specification logic.

Lemma 10 (Total Correctness afz(Q)). VN1, No, M, M
if Ni,No € N andM = MO[O ad NQ][l — Nl] thenﬂNg,
N3 € NandT;t,, (M) F (e tr(Q) 0 (m 0 N3) ® T) and
Ny
N3=Ny+ >4
=0
The value of a memory location was extracted by func-
tion application in the object system. In the encoding we re-
trieve the value from memory after program evaluation via a



— (e NN CQO)
(6 FEi Ny (6 FEs Ny ( Nl + No ® C))) —o (6 (add FEy Eg) N3 C)
(6 E1 Nl (6 EQ NQ ( N2 X O))) —0 (8 (sub E1 EQ) N3 O)
(6 Ey N; (6 Es Ny (Nl > NQ ® O))) —o (8 (gt Ey EQ) Sz O)
(6 E1 Nl (6 EQ NQ (Nl <N2®O))) —0 (8 (gt El EQ)ZC)
(6 FE N1 ((m Nl Ng) ((m Nl Ng) —0 C))) —0 (6 (get E) N2 C)
(6 El N1 (6 E2 Ng ((m N1 N3) & ((m N1 Ng) —o C)))) —o (6 (set El EQ) N2 C)
(6 E1 Nl (6 EQ NQ C)) —0 (8 (seq E1 EQ) N2 C)
(6 E1 Ny (6 Ey No (8 (U)h, Ey EQ)C)))@Nl >z —o (8 (U)h, Ey EQ)ZO)
(6E1 Nl )®N1—Z —0 (8 (U)hEl EQ)ZO)

Figure 4. The program clause formulas modeling the evaluation sdosagitzen in sectioh 2]1 in the specification logic.

— TR
T;(m 0 M(1)),(m 1 M(1)),(m 2 M(0)),t,(0) = ((m 2 M(0)) ® (m 2 M(0))) — ((m 1 M(1)) ® ((m 1 M(0)) — )) BCy
I;(m 0 M(1)),(m1M(1)),(m2 M(0)),t,(0) F (€22 ((m2 M(0)) ® ((m2M(0)) — (m1M(1) ((m1M(0)) N)) BCy
T;(m 0 M(1)),(m 1 M(1)),(m 2 M(0)), t(0) & (e (get 2) M(0) (m 1 M(1)) @ ((m 1 M(0)) — T))) BCy
T (m 0 M(1)),(m 1 M(1)),(m 2 M(0)),tm(0) F (e 11 (e (get 2) M(0) ((m 1 M(1))® ((m 1 M(0)) — T)))) BCy

T;(m 0 M(1)),(m1M(1)),(m2M(0)),tm(0) F (e (set 1 (get 2)) M(0) T)

Figure 5. A proof of the sequerit; (m 0 M (1)), (m 1 M (1)), (m 2 M(0)),t(O) F (e (1 + %2) M"(0) T).

continuation formula. Specifically, in Lemrhal10 that contin ~ N1; this is our inductive hypothesis. Proof analysis of the
uation formulaigm 0 N3) ® T. This formula extracts only ~ sequent
the value in memory at locatiah This is where we expect Tt (M), (m 1 M(1)), (m 0 M(0)) -
the result of prograny to be stored.

The encoding of Theorefd 2 is similar. Observe that (e tr(Q) 0 ((m 0 N3))
and N, are immediately initialized upon evaluation &%, reveals that it suffices to build a proof for the sequent

this use ofN; and N, is only meant to ensure that memory ) ,
M is defined at locationg and1. T (m}_l(((f]\t/[((g)—ol()()&(gn](\)[ ()]\é(g));_ M (1)), tm (M)
R 3 .

Theorem 11(Total Correctness af (P)). VN1, Na, M, My We omit such a proof in our discussion here; it mimics the

']fVNl’ Jg? EdI\%?tnd]]\\/‘[/[ =|_Mo[? ?Ng] 1 7) J]\\il] the_|r_13N3(,j derivation for the second case given in Subsedfioh 2.3, it is
3 € Nan 1tm (M) = (e ta(P) 0 (m )@ T)an tedious, and, its construction is completely mechanizable

N3 =i our specification logic. The inductive hypothesis yields th
‘ sequent. Additionally, by the inductive hypothesis, weéhav
] M(1)—1
5.2 Reasoning about Proofs Ny = (M(0)+M(1))+ Z i forsomeN, € N. Thisis
Reasoning about the model is structured according to the M(l)
reasoning structure in Subsection]2.3. equivalenttaVy = M (0) + > iandthusN; = Ny,. O
=0

Proof of Theorerh 11We must prove
Proof of Lemm&7l0This will be shown by induction ov;. l P

In the first case wher&; = 0, the proof in Figuré€ls can be it (M) = (e tr(P) 0 (m 0 N3) @ T)
constructed and we can conclude that = N,. Therefore,

we have thafVs = Ny + Z i.

In the second case we assume that Lerima 10 holds if
M (1) < Ny and must show this lemma holds whif(1) = Titm(M'),(m 1 N),(m00)F (etr(Q)0 ((m0N3)®T))

N
andN; = > i. Proof analysis of this sequent reveals it is

=0
sufficient to prove the sequent



BCy TR
T;(m 0 Ny) = (m0 N T;(m10),t,(MYET
y i (m 0 N») - (m 0 Np) 5 (m 10), tm (M) oR

- ;- (0<>1) i (m10),t,(M),(mON2) = ((mON2)®T) R
TFo<o0 = % (m 10), ('), (m 0 Na) (0 <> ) @ (0N @ T)) _ - @
T (m 1 0), b (M), (m 0 Na) F (0< 0@ ((0 <> 1) ® ((m 0 Na) @ T))) BCGB :
BC I (m10),t,(M),(m0ON)F(c00(0<0®((0<>1)®((m0N2)®T)))) lR
[;(m10)F (m10) b Lyt (M), (m ON2) F ((m10) —(e00(0<0®((0<>1)®@((m0N2)®@T))))) Ja
Iyt (M),(m10),(mON2) F((m10)® ((m10)—(e00(0<0®((0<>1)®@((m0N2)®T)))))) Bé‘B
Iyt (M'),(m10),(mON)F(e11((m10)®@((m10)—(e00(0<0®((0<>1)@((m0N2)®T))))))) BCu
Tyt (M), (m 10),(m0N2) (e (get 1) 0(e00(0<0® ((0<>1)® ((m 0 N3)®T))))) BC “
it (M), (m 10),(m 0 Na) b (e (gt (get 1) 0) 0 ((0 <> 1)@ ((m 0 N2) @ T))) “ BC
Tt (M), (m 10),(m 0 Na) (e (wh (gt (get 1) 0) (seq (set 0 (add (get 0) (get 1))) (set 1 (sub (get 1) 1)))) 0 ((m 0 N2) @ T)) “

Figure 6. A proof of the judgment’;t,,(M) + (e tr(Q) 0 (m 0 N3) ® T) whereN;,N, € N, Ny = 0,
M = My[0 — Ns][1 — N;], andM’ is a partial function undefined &f1 and equal ta\/,, otherwise.

. We have both by Lemmall0. O we then obtain the ability to prove properties about deriva-
tions in the specification logic. One of ourimmediate gogls i

5.3 Extracting Properties from the Model to accommodate a linear specification logic within the same

We would like to extract Lemma_10 and TheorEm 11 into reasoning logic that underlies Abella, thereby producing a
the object system. In general, doing so requires some confi-variant of Abella that supports the development of formal
dence that the extracted property is meaningful in the objec arguments related to systems oriented around resource us-
system. Such confidence is typically acquired through an in- @ge. Once we have an implementation of such a system at
formal adequacy argument [8]. hand, the next step would be to use it to formalize the kinds
The adequacy of an encoding can be shown by giving ©f arguments we have presented in this paper.
a bijective translation function from the object system to  In addition to actually implementing the ideas we have
the encoding. There are complexities in providing such a discussed in this paper within a formal system, we must also
translation for our encoding; in the object system, memsryi €xtend them so that we can reason about a larger, more re-
a term while in the encoding memory is formula. How such alistic collection of programs. The imperative prograna th

a translation can be given is left to future work. we have considered in this paper use programming language
constructs permitting non-termination and memory manipu-

lations, i.e. lookup and update. In essence, we have demon-
h idered in thi h ibility of | strated that our approach can be effective when reasoning
We have considered in this paper the possibility of formal- -, ¢ properties of basic imperative programs lackingtpoin

i_zing the process of reasqning about properties_ of impera- ¢, (because memory values were never used in lookups) or
tive programs. Towards this end, we have described a Spec'dynamic allocation. Going forward, we would like to exam-

|f|cat|on_ logic that can tr_ansparently mode_l Imperative-pro e o particular kinds of extensions to this work.
gramming languages with semantics defined in an natural

semantics style. An important aspect of this specification
logic is that its proof relation can be restructured so as to
yield derivations that closely resemble the ones that may be
constructed in the original natural semantics style ermagsli

of object systems. We have illustrated how this character-
istic can be exploited in reasoning about the properties of
the object systems. In our example, we have used an infor-
mal style of reasoning over specification logic derivations
However, we believe that this reasoning process can be for-
malizing and we are examining this aspect in ongoing work.

6. Conclusion

The languagechosen in this paper does not permit
complex notions of data, dynamic memory allocation,
or functional aspects. It does permit references but the
imperative program analyzed does not use them. A
more relevant language to model would be a subset
of SML [17] excluding data-type definitions and the
module subsystem. This subset would not make mod-
eling evaluation semantics much more complex. For
example, memory allocation can be treated naturally

In particular, we are exploring the idea of using a two-level
logic approach |6, 14] that has been successfully exploited
in conjunction with an intuitionistic specification logit the
Abella system([6]. In this approach, we encode a specifica-
tion logic via its derivability relation within a rich “reas-

ing” logic: by using the capabilities of the reasoning lagic

using universal quantifiers. We conjecture that such
changes will not alter the intuitive nature of reason-
ing.

The program chosen and its correctness property
is trivial. Programs in common use among other re-
searchers concerned with reasoning about imperative



programs are linked list (singly or doubly) manipu-
lation programs and implementations of the Schorr-
Waite algorithm[1]. Additionally, properties of pro-
grams using references can be particularly difficult to
reason about due to aliasing. Aliasing occurs when a
location can be accessed in two different ways. For
example, the program

1+ 0;2+ 1;3+ 1;%2 < 4;*x3

is one where aliasing occurs; the last two program
expressions will update and lookup, respectively, lo-
cation1. Reasoning in basic Hoare logic is unsound
when programs containing aliasing are considered.

Hoare logic can be extended such that reasoning about

pointers is technically feasible but complex[18]. We
have an inchoate idea that a treatment of aliasing
should not require major changes to our specification
logic because locations are not named. Therefore, ref-
erences to aliased data is explicit. How this treatment
will affect reasoning intuitions remains uncleatr.

[8] R. Harper and D. R. Licata. Mechanizing metatheory in a

logical framework. Journal of Functional Programmingl7
(4-5):613-673, July 2007.

[9] J. Hodas and D. Miller. Logic programming in a fragment
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editor,6th Symp. on Logic in Computer Scienpages 32—42,
Amsterdam, July 1991.

[10] J. L. Jensen, M. E. Jgrgensen, M. |. Schwartzbach, and

N. Klarlund. Automatic verification of pointer programs us-
ing monadic second-order logic. Rroceedings of the ACM
SIGPLAN 1997 Conference on Programming Language De-
sign and ImplementationPLDI '97, pages 226—234, New
York, NY, USA, 1997. ACM. ISBN 0-89791-907-6. . URL
http://doi.acm.org/10.1145/258915.258936.

[11] L. Jia and D. Walker. llc: A foundation for automated tea

soning about pointer programs. In P. Sestoft, edRoogram-
ming Languages and Systemelume 3924 oL ecture Notes
in Computer Sciencgages 131-145. Springer Berlin Heidel-
berg, 2006. ISBN 978-3-540-33095-0.

[12] G. Kahn. Natural semantics. Rroceedings of the Symposium

on Theoretical Aspects of Computer Sciena#ume 247 of
LNCS pages 22-39. Springer, Mar. 1987.

Fina”y, we must better Understand the ConneCtionS be' [13] T. Lev-Ami and M. Sagivl Tvila: A System for imp|ementing

tween our approach and others such as ones using Hoare
and separation based logic[3,l 11, 15!/ 18], pointer asser-
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